Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin remodelling during development

Abstract

New methods for the genome-wide analysis of chromatin are providing insight into its roles in development and their underlying mechanisms. Current studies indicate that chromatin is dynamic, with its structure and its histone modifications undergoing global changes during transitions in development and in response to extracellular cues. In addition to DNA methylation and histone modification, ATP-dependent enzymes that remodel chromatin are important controllers of chromatin structure and assembly, and are major contributors to the dynamic nature of chromatin. Evidence is emerging that these chromatin-remodelling enzymes have instructive and programmatic roles during development. Particularly intriguing are the findings that specialized assemblies of ATP-dependent remodellers are essential for establishing and maintaining pluripotent and multipotent states in cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combinatorial assembly of chromatin-remodelling complexes produces biological specificity.
Figure 2: Chromatin-remodelling complexes in development.
Figure 3: Chromatin-remodelling complexes in maintaining pluripotency.

Similar content being viewed by others

References

  1. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    ADS  PubMed  CAS  Google Scholar 

  2. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Y. et al. Linking covalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Cold Spring Harb. Symp. Quant. Biol. 69, 161–169 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Cote, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Schones, D. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yoo, A. S. & Crabtree, G. R. ATP-dependent chromatin remodeling in neural development. Curr. Opin. Neurobiol. 19, 120–126 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Morrison, A. J. & Shen, X. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nature Rev. Mol. Cell Biol. 10, 373–384 (2009).

    Article  CAS  Google Scholar 

  10. Chi, T. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19, 169–182 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Trotter, K. W. & Archer, T. K. The BRG1 transcriptional coregulator. Nucl. Recept. Signal. 6, e004 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stankunas, K. et al. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev. Cell 14, 298–311 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wu, J. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. Voncken, J. W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl Acad. Sci. USA 100, 2468–2473 (2003).

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  15. Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387–392 (2009).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lim, D. A. et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila . Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988).

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  18. Chalkley, G. E. et al. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex. Mol. Cell. Biol. 28, 2920–2929 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dingwall, A. K. et al. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol. Biol. Cell 6, 777–791 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245–5254 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. Brown, E., Malakar, S. & Krebs, J. E. How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem. Cell Biol. 85, 444–462 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bultman, S. J. et al. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17, 6979–6991 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yan, Z. et al. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26, 1155–1165 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Kidder, B. L., Palmer, S. & Knott, J. G. SWI/SNF–Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27, 317–328 (2008).

    Article  CAS  Google Scholar 

  31. Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl Acad. Sci. USA 106, 5187–5191 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Hansis, C., Barreto, G., Maltry, N. & Niehrs, C. Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14, 1475–1480 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kim, J. K. et al. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell Biol. 21, 7787–7795 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schaniel, C. et al. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells doi:10.1002/stem.223 (25 September 2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Parrish, J. Z., Kim, M. D., Jan, L. Y. & Jan, Y. N. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev. 20, 820–835 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yoo, A. S., Staahl, B. T., Chen, L. & Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lange, M. et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev. 22, 2370–2384 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  41. Takeuchi, J. K. et al. Baf60c is a nuclear Notch signaling component required for the establishment of left–right asymmetry. Proc. Natl Acad. Sci. USA 104, 846–851 (2007).

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  42. Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009). This study showed that BAF60C, together with two cardiogenic transcription factors (GATA4 and TBX5), is sufficient to direct heart formation in non-cardiogenic tissues in developing embyros, demonstrating that chromatin remodelling by specific BAF complexes can be both necessary and sufficient for specific fate induction.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, Z. et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 18, 3106–3116 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Huang, X., Gao, X., Diaz-Trelles, R., Ruiz-Lozano, P. & Wang, Z. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev. Biol. 319, 258–266 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Sawada, S., Scarborough, J. D., Killeen, N. & Littman, D. R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  PubMed  CAS  Google Scholar 

  46. Wan, M. et al. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur. J. Immunol. 39, 580–588 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chi, T. H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  48. Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  ADS  PubMed  CAS  Google Scholar 

  50. de la Serna, I. L., Carlson, K. A. & Imbalzano, A. N. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nature Genet. 27, 187–190 (2001).

    Article  PubMed  CAS  Google Scholar 

  51. Dirscherl, S. S. & Krebs, J. E. Functional diversity of ISWI complexes. Biochem. Cell Biol. 82, 482–489 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Corona, D. F. et al. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol. 5, e232 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Siriaco, G., Deuring, R., Chioda, M., Becker, P. B. & Tamkun, J. W. Drosophila ISWI regulates the association of histone H1 with interphase chromosomes in vivo. Genetics 182, 661–669 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Xi, R. & Xie, T. Stem cell self-renewal controlled by chromatin remodeling factors. Science 310, 1487–1489 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  55. Badenhorst, P., Voas, M., Rebay, I. & Wu, C. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16, 3186–3198 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Landry, J. et al. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet. 4, e1000241 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Banting, G. S. et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14, 513–524 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Stopka, T. & Skoultchi, A. I. The, ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA 100, 14097–14102 (2003).

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  59. Francke, U. Williams–Beuren syndrome: genes and mechanisms. Hum. Mol. Genet. 8, 1947–1954 (1999).

    Article  PubMed  CAS  Google Scholar 

  60. Yoshimura, K. et al. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc. Natl Acad. Sci. USA 106, 9280–9285 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Hall, J. A. & Georgel, P. T. CHD proteins: a diverse family with strong ties. Biochem. Cell Biol. 85, 463–476 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  63. Sims, R. J. et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. McDaniel, I. E., Lee, J. M., Berger, M. S., Hanagami, C. K. & Armstrong, J. A. Investigations of CHD1 function in transcription and development of Drosophila melanogaster . Genetics 178, 583–587 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Konev, A. Y. et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317, 1087–1090 (2007). This was the first study to show the ability of CHD1 to incorporate H3.3 into paternal chromatin, rendering it competent for post-fertilization mitosis, possibly explaining the sterility of CHD1-deficient D. melanogaster.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hödl, M. & Basler, K. Transcription in the absence of histone H3.3. Curr. Biol. 19, 1221–1226 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Gaspar-Maia, A. et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 802–803 (2009).

    Article  CAS  Google Scholar 

  68. Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    Article  PubMed  CAS  Google Scholar 

  69. Bowen, N. J., Fujita, N., Kajita, M. & Wade, P. A. Mi-2/NuRD: multiple complexes for many purposes. Biochim. Biophys. Acta 1677, 52–57 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. Feng, Q. & Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev. 15, 827–832 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    Article  PubMed  CAS  Google Scholar 

  72. Kaji, K., Nichols, J. & Hendrich, B. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development 134, 1123–1132 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol. 8, 285–292 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. Williams, C. J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity 20, 719–733 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. Yoshida, T. et al. The role of the chromatin remodeler Mi-2β in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev. 22, 1174–1189 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Vissers, L. E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 36, 955–957 (2004).

    Article  PubMed  CAS  Google Scholar 

  77. Hurd, E. A. et al. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm. Genome 18, 94–104 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Schnetz, M. P. et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19, 590–601 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Srinivasan, S., Dorighi, K. M. & Tamkun, J. W. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet. 4, e1000217 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bao, Y. & Shen, X. INO80 subfamily of chromatin remodeling complexes. Mutat. Res. 618, 18–29 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  82. Ruhl, D. D. et al. Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45, 5671–5677 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Wong, M. M., Cox, L. K. & Chrivia, J. C. The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J. Biol. Chem. 282, 26132–26139 (2007).

    Article  PubMed  CAS  Google Scholar 

  84. Creyghton, M. P. et al. H2AZ is enriched at Polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135, 649–661 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sapountzi, V., Logan, I. R. & Robson, C. N. Cellular functions of TIP60. Int. J. Biochem. Cell Biol. 38, 1496–1509 (2006).

    Article  PubMed  CAS  Google Scholar 

  86. Herceg, Z. et al. Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nature Genet. 29, 206–211 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. Fazzio, T. G., Huff, J. T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60−p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008). This paper reports an RNAi screen of mouse ESCs for chromatin proteins that are crucial for pluripotency and self-renewal. Two major classes of remodeller, TIP60-p400 and BAF complexes, were found to be essential.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  91. de La Serna, I. L., Ohkawa, Y. & Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nature Rev. Genet. 7, 461–473 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. Pedersen, T. A., Kowenz- Leutz, E., Leutz, A. & Nerlov, C. Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev. 15, 3208–3216 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bultman, S. J., Gebuhr, T. C. & Magnuson, T. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development. Genes Dev. 19, 2849–2861 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kaeser, M. D., Aslanian, A., Dong, M. Q., Yates, J. R. & Emerson, B. M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Marfella, C. G. et al. Mutation of the SNF2 family member Chd2 affects mouse development and survival. J. Cell. Physiol. 209, 162–171 (2006).

    Article  PubMed  CAS  Google Scholar 

  96. Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell 128, 459–475 (2007).

    Article  PubMed  CAS  Google Scholar 

  97. White, P. S. et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24, 2684–2694 (2005).

    Article  PubMed  CAS  Google Scholar 

  98. Layman, W. S. et al. Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum. Mol. Genet. 18, 1909–1923 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Shur, I., Socher, R.,& Benayahu, D. In vivo association of CReMM/CHD9 with promoters in osteogenic cells. J. Cell. Physiol. 207, 374–378 (2006).

    Article  PubMed  CAS  Google Scholar 

  100. Strohner, R. et al. NoRC — a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20, 4892–4900 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Barak, O. et al. Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J. 22, 6089–6100 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Toh, Y. & Nicolson, G. L. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin. Exp. Metastasis 26, 215–227 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Yoo, A. Shalizi and J. Ronan for comment and critique throughout the preparation of this article. L.H. is funded by the Agency for Science, Technology and Research (Singapore). G.R.C. is funded by grants from the National Institutes of Health and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence should be addressed to G.R.C. (crabtree@stanford.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, L., Crabtree, G. Chromatin remodelling during development. Nature 463, 474–484 (2010). https://doi.org/10.1038/nature08911

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08911

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing