Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of electron beams carrying orbital angular momentum



All forms of waves can contain phase singularities1,2,3,4. In the case of optical waves, a light beam with a phase singularity carries orbital angular momentum, and such beams have found a range of applications in optical manipulation, quantum information and astronomy3,4,5,6,7,8,9. Here we report the generation of an electron beam with a phase singularity propagating in free space, which we achieve by passing a plane electron wave through a spiral phase plate constructed naturally from a stack of graphite thin films. The interference pattern between the final beam and a plane electron wave in a transmission electron microscope shows the ‘Y’-like defect pattern characteristic of a beam carrying a phase singularity with a topological charge equal to one. This fundamentally new electron degree of freedom could find application in a number of research areas, as is the case for polarized electron beams.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conversion from a plane wave to a spiral-type wave using a spiral phase plate.
Figure 2: Phase distributions and simulated interference patterns for the spiral and spiral-like linear phase plates.
Figure 3: Spiral-like phase plate composed of graphite thin films and the phase singularity in the electron interference pattern.

Similar content being viewed by others


  1. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nye, J. F. Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, 1999)

    MATH  Google Scholar 

  3. Allen, L., Barnett, S. M. & Padgett, M. J. eds. Optical Angular Momentum (Taylor & Francis, 2003)

    Book  Google Scholar 

  4. Padgett, M., Courtial, J. & Allen, L. Light’s orbital angular momentum. Phys. Today 57 (5). 35–40 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes. Phys. Rev. A 45, 8185–8190 (1992)

    Article  ADS  CAS  Google Scholar 

  6. He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Paterson, M. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Fukuhara, A., Shinagawa, K., Tonomura, A. & Fujiwara, H. Electron holography and magnetic specimens. Phys. Rev. B 27, 1839–1843 (1983)

    Article  ADS  CAS  Google Scholar 

  11. Tonomura, A. Applications of electron holography. Rev. Mod. Phys. 59, 639–669 (1987)

    Article  ADS  CAS  Google Scholar 

  12. Allen, L. J., Faulkner, H. M. L., Oxley, M. P. & Paganin, D. Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy. Ultramicroscopy 88, 85–97 (2001)

    Article  CAS  Google Scholar 

  13. Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007)

    Article  ADS  Google Scholar 

  14. Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital momentum. Opt. Commun. 96, 123–132 (1993)

    Article  ADS  Google Scholar 

  15. Khonina, S. N., Kotlyar, V. V., Shinkaryev, M. V., Soifer, V. A. & Uspleniev, G. V. The phase rotor filter. J. Mod. Opt. 39, 1147–1154 (1992)

    Article  ADS  Google Scholar 

  16. Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M. & Woerdman, J. P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994)

    Article  ADS  CAS  Google Scholar 

  17. Kotlyar, V. V. et al. Diffraction of a plane, finite-radius wave by a spiral phase plate. Opt. Lett. 31, 1597–1599 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Bazhenov, V., Yu, Vasnetsov, M. V. & Soskin, M. S. Laser beams with screw dislocations in their wavefronts. Sov. JETP Lett. 52, 429–431 (1990)

    Google Scholar 

  19. Heckenberg, H. R., McDuff, R., Smith, C. P. & White, A. G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992)

    Article  ADS  CAS  Google Scholar 

  20. Basistiy, I., Bazhenov, V., Yu, Soskin, M. S. & Vasnetsov, M. V. Optics of light beams with screw dislocations. Opt. Commun. 103, 422–428 (1993)

    Article  ADS  Google Scholar 

  21. Angelsky, O. V., Besaha, R. N. & Mokhun, I. I. Appearance of wave front dislocations under interference among beams with simple wave fronts. Opt. Appl. 27, 273–278 (1997)

    Google Scholar 

  22. Kim, G. H. et al. Optical vortices produced with a nonspiral phase plate. Appl. Opt. 36, 8614–8621 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Tonomura, A. Electron Holography (Springer, 1999)

    Book  Google Scholar 

  25. Völkl, E., Allard, L. F. & Frost, B. J. A software package for the processing and reconstruction of electron holograms. Microscopy 180, 39–50 (1995)

    Article  Google Scholar 

  26. Leach, J., Yao, E. & Padgett, M. J. Observation of the vortex structure of a non-integer vortex beam. N. J. Phys. 6, 71 (2004)

    Article  Google Scholar 

  27. Fürhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 13, 689–694 (2005)

    Article  ADS  Google Scholar 

  28. Majorovits, E. et al. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107, 213–226 (2007)

    Article  CAS  Google Scholar 

  29. Schattschneider, P. Exchange of angular momentum in EMCD experiments. Ultramicroscopy 109, 91–95 (2008)

    Article  CAS  Google Scholar 

  30. Sánchez, A. & Ochando, M. A. Calculation of the mean inner potential. J. Phys. C 18, 33–41 (1985)

    Article  ADS  Google Scholar 

Download references


Discussions with F. Nori, H. Ichinose and K. Sawada of RIKEN are acknowledged.

Author Contributions M.U. had the idea of doing this experiment, fabricated the phase plate, performed the TEM experiments, analysed and interpreted the data, simulated the interference patterns, and wrote the manuscript; A.T. coordinated the work on the TEM.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Masaya Uchida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, M., Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing