Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme

Abstract

Most archaeal groups and deeply branching bacterial lineages harbour thermophilic organisms with a chemolithoautotrophic metabolism. They live at high temperatures in volcanic habitats at the expense of inorganic substances, often under anoxic conditions1. These autotrophic organisms use diverse carbon dioxide fixation mechanisms generating acetyl-coenzyme A, from which gluconeogenesis must start2,3,4. Here we show that virtually all archaeal groups as well as the deeply branching bacterial lineages contain a bifunctional fructose 1,6-bisphosphate (FBP) aldolase/phosphatase with both FBP aldolase and FBP phosphatase activity. This enzyme is missing in most other Bacteria and in Eukaryota, and is heat-stabile even in mesophilic marine Crenarchaeota. Its bifunctionality ensures that heat-labile triosephosphates are quickly removed and trapped in stabile fructose 6-phosphate, rendering gluconeogenesis unidirectional. We propose that this highly conserved, heat-stabile and bifunctional FBP aldolase/phosphatase represents the pace-making ancestral gluconeogenic enzyme, and that in evolution gluconeogenesis preceded glycolysis5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic unrooted trees of Archaea and Bacteria.
Figure 2: Phylogenetic tree of FBP aldolases/phosphatases (compare with the ribosomal proteins trees in Fig. 1 ).
Figure 3: Reactions of the bifunctional FBP aldolase/phosphatase.
Figure 4: Active centre of FBP aldolase/phosphatase18.

Similar content being viewed by others

References

  1. Stetter, K. O. Hyperthermophiles in the history of life. Phil. Trans. R. Soc. Lond. B 361, 1837–1843 (2006)

    Article  CAS  Google Scholar 

  2. Berg, I. A. et al. Autotrophic carbon fixation in Archaea. Nature Rev. Microbiol. (in the press)

  3. Huber, H. et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis . Proc. Natl Acad. Sci. USA 105, 7851–7856 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782–1786 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Ronimus, R. S. & Morgan, H. W. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1, 199–221 (2003)

    Article  CAS  Google Scholar 

  6. Wächtershäuser, G. On the chemistry and evolution of the pioneer organism. Chem. Biodivers. 4, 584–602 (2007)

    Article  Google Scholar 

  7. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nature Rev. Microbiol. 6, 805–814 (2008)

    Article  CAS  Google Scholar 

  8. Siebers, B. & Schönheit, P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr. Opin. Microbiol. 8, 695–705 (2005)

    Article  CAS  Google Scholar 

  9. Fuchs, G., Winter, H., Steiner, I. & Stupperich, E. Enzymes of gluconeogenesis in the autotroph Methanobacterium thermoautotrophicum . Arch. Microbiol. 136, 160–162 (1983)

    Article  CAS  Google Scholar 

  10. Jahn, U., Huber, H., Eisenreich, W., Hügler, M. & Fuchs, G. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J. Bacteriol. 189, 4108–4119 (2007)

    Article  CAS  Google Scholar 

  11. Schäfer, S., Barkowski, C. & Fuchs, G. Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus . Arch. Microbiol. 146, 301–308 (1986)

    Article  Google Scholar 

  12. Imanaka, H., Fukui, T., Atomi, H. & Imanaka, T. Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biosci. Bioeng. 94, 237–243 (2002)

    Article  CAS  Google Scholar 

  13. Lorentzen, E., Siebers, B., Hensel, R. & Pohl, E. Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase. Biochem. Soc. Trans. 32, 259–263 (2004)

    Article  CAS  Google Scholar 

  14. Andreeva, A. et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36, D419–D425 (2008)

    Article  CAS  Google Scholar 

  15. Grochowski, L. L. & White, R. H. Promiscuous anaerobes: new and unconventional metabolism in methanogenic archaea. Ann. NY Acad. Sci. 1125, 190–214 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Rashid, N. et al. A novel candidate for the true fructose-1,6-bisphosphatase in archaea. J. Biol. Chem. 277, 30649–30655 (2002)

    Article  CAS  Google Scholar 

  17. Sato, T. et al. Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J. Bacteriol. 186, 5799–5807 (2004)

    Article  CAS  Google Scholar 

  18. Nishimasu, H., Fushinobu, S., Shoun, H. & Wakagi, T. The first crystal structure of the novel class of fructose-1,6-bisphosphatase present in thermophilic archaea. Structure 12, 949–959 (2004)

    Article  CAS  Google Scholar 

  19. Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum . Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Potential genomic determinants of hyperthermophily. Trends Genet. 19, 172–176 (2003)

    Article  CAS  Google Scholar 

  21. Chong, P. K., Burja, A. M., Radianingtyas, H., Fazeli, A. & Wright, P. C. Proteome analysis of Sulfolobus solfataricus P2 propanol metabolism. J. Proteome Res. 6, 1430–1439 (2007)

    Article  CAS  Google Scholar 

  22. Ludwig, W. & Klenk, H.-P. In The Archaea and the Deeply Branching and Phototrophic Bacteria (eds Boone, D. R. & Garrity, G. M.). Bergey’s Manual of Systematic Bacteriology, 2nd edn, Vol. One, 49–65 (Springer, 2001)

    Google Scholar 

  23. Pierce, E. et al. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ. Microbiol. 10, 2550–2573 (2008)

    Article  CAS  Google Scholar 

  24. Ferry, J. G. & House, C. H. The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006)

    Article  CAS  Google Scholar 

  25. te Poele, E. M., Bolhuis, H. & Dijkhuizen, L. Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek 94, 127–143 (2008)

    Article  Google Scholar 

  26. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008)

    Article  CAS  Google Scholar 

  27. Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Zhaxybayeva, O. et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl Acad. Sci. USA 106, 5865–5870 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Dagan, T., Artzy-Randrup, Y. & Martin, W. Modular networks and cumulative impact of lateral gene transfer in prokaryote genome evolution. Proc. Natl Acad. Sci. USA 105, 10039–10044 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Teeling, H. & Glöckner, F. O. RibAlign: a software tool and database for eubacterial phylogeny based on concatenated ribosomal protein subunits. BMC Bioinform. 7, 1–6 (2006)

    Article  Google Scholar 

  31. Huber, H. et al. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int. J. Syst. Evol. Microbiol. 50, 2093–2100 (2000)

    Article  Google Scholar 

  32. Ramos-Vera, W. H., Berg, I. A. & Fuchs, G. Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J. Bacteriol. 191, 4286–4297 (2009)

    Article  CAS  Google Scholar 

  33. Teufel, R., Kung, J. W., Kockelkorn, D., Alber, B. E. & Fuchs, G. 3-Hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales. J. Bacteriol. 191, 4572–4581 (2009)

    Article  CAS  Google Scholar 

  34. Tabor, S. & Richardson, C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl Acad. Sci. USA 82, 1074–1078 (1985)

    Article  ADS  CAS  Google Scholar 

  35. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005)

    Article  CAS  Google Scholar 

  36. Dawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K. M. Data for Biochemical Research 3rd edn (Oxford Univ. Press, 1986)

    Google Scholar 

  37. Ellis, K. J. & Morrison, J. F. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 87, 405–426 (1982)

    Article  CAS  Google Scholar 

  38. Scamuffa, M. D. & Caprioli, R. M. Comparison of the mechanisms of two distinct aldolases from Escherichia coli grown on gluconeogenic substrates. Biochim. Biophys. Acta 614, 583–590 (1980)

    Article  CAS  Google Scholar 

  39. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  ADS  CAS  Google Scholar 

  40. Schopfer, P., Heyno, E., Drepper, F. & Krieger-Liszkay, A. Naphthoquinone-dependent generation of superoxide radicals by quinone reductase isolated from the plasma membrane of soybean. Plant Physiol. 147, 864–878 (2008)

    Article  CAS  Google Scholar 

  41. Gish, W. & States, D. J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993)

    Article  CAS  Google Scholar 

  42. Rashid, N. et al. A novel candidate for the true fructose-1,6-bisphosphatase in archaea. J. Biol. Chem. 277, 30649–30655 (2002)

    Article  CAS  Google Scholar 

  43. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  CAS  Google Scholar 

  44. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007)

    Article  CAS  Google Scholar 

  45. Gascuel, O. & Steel, M. Neighbor-joining revealed. Mol. Biol. Evol. 23, 1997–2000 (2006)

    Article  CAS  Google Scholar 

  46. Fitch, M. W. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  47. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  ADS  CAS  Google Scholar 

  48. Witke, C. & Götz, F. Cloning, sequencing, and characterization of the gene encoding the class I fructose-1,6-bisphosphate aldolase of Staphylococcus carnosus . J. Bacteriol. 175, 7495–7499 (1993)

    Article  CAS  Google Scholar 

  49. De Montigny, C. & Sygusch, J. Functional characterization of an extreme thermophilic class II fructose-1,6-bisphosphate aldolase. Eur. J. Biochem. 241, 243–248 (1996)

    Article  CAS  Google Scholar 

  50. Sauvé, V. & Sygusch, J. Crystallization and preliminary X-ray analysis of native and selenomethionine fructose-1,6-bisphosphate aldolase from Thermus aquaticus . Acta Crystallogr. D 57, 310–313 (2001)

    Article  Google Scholar 

  51. Sauve, V. & Sygusch, J. Molecular cloning, expression, purification, and characterization of fructose-1,6-bisphosphate aldolase from Thermus aquaticus . Protein Expr. Purif. 21, 293–302 (2001)

    Article  CAS  Google Scholar 

  52. White, R. H. L. Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii . Biochemistry 43, 7618–7627 (2004)

    Article  CAS  Google Scholar 

  53. Schofield, L. R., Patchett, M. L. & Parker, E. J. Expression, purification, and characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Pyrococcus furiosus . Protein Expr. Purif. 34, 17–27 (2004)

    Article  CAS  Google Scholar 

  54. Babul, J. & Guixe, V. Fructose bisphosphatase from Escherichia coli. Purification and characterization. Arch. Biochem. Biophys. 225, 944–949 (1983)

    Article  CAS  Google Scholar 

  55. Donahue, J. L., Bownas, J. L., Niehaus, W. G. & Larson, T. J. Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli . J. Bacteriol. 182, 5624–5627 (2000)

    Article  CAS  Google Scholar 

  56. Fujita, Y. & Freese, E. Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis . J. Biol. Chem. 254, 5340–5349 (1979)

    CAS  PubMed  Google Scholar 

  57. Stec, B., Yang, H., Johnson, K. A., Chen, L. & Roberts, M. F. MJ0109 is an enzyme that is both an inositol monophosphatase and the ‘missing’ archaeal fructose-1,6-bisphosphatase. Nature Struct. Biol. 7, 1046–1050 (2000)

    Article  CAS  Google Scholar 

  58. Falb, M. et al. Metabolism of halophilic archaea. Extremophiles 12, 177–196 (2008)

    Article  CAS  Google Scholar 

  59. Erb, T. J., Retey, J., Fuchs, G. & Alber, B. E. Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J. Biol. Chem. 283, 32283–32293 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Thauer, S. Ragsdale, H. Atomi and H. Huber for the supply of strains; F. Drepper for help with bioinformatic approaches; W. Haehnel and B. Knapp for MS analysis; N. Gad’on and C. Ebenau-Jehle for growing cells and maintaining the laboratory running; the DOE Joint Genome Institute for early release of archaeal genomic sequence data; and the Deutsche Forschungsgemeinschaft and Evonik-Degussa for financial support. We also thank M. Ziemski and I. Berg for help with data base analysis as the basis of Fig. 1a, and H. Teeling and F. O. Glöckner for providing Fig. 1b.

Author Contributions R.F.S. performed the experiments; R.F.S. and G.F. designed the work and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure SI1-SI5 with legends, Supplementary Tables SI1-SI3 and Supplementary References. (PDF 942 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Say, R., Fuchs, G. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464, 1077–1081 (2010). https://doi.org/10.1038/nature08884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08884

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology