Abstract
Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms1, and coherent light–matter interfaces have been built2,3. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms4 and to search for variations of fundamental constants in precision atomic clocks5. Until now, atomic quantum gases and single trapped ions have been treated separately in experiments. Here we investigate whether they can be advantageously combined into one hybrid system, by exploring the immersion of a single trapped ion into a Bose–Einstein condensate of neutral atoms. We demonstrate independent control over the two components of the hybrid system, study the fundamental interaction processes and observe sympathetic cooling of the single ion by the condensate. Our experiment calls for further research into the possibility of using this technique for the continuous cooling of quantum computers6. We also anticipate that it will lead to explorations of entanglement in hybrid quantum systems and to fundamental studies of the decoherence of a single, locally controlled impurity particle coupled to a quantum environment7,8.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ionic polaron in a Bose-Einstein condensate
Communications Physics Open Access 11 May 2021
-
Long-range versus short-range effects in cold molecular ion-neutral collisions
Nature Communications Open Access 28 November 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)
Brennecke, F. et al. Cavity QED with a Bose–Einstein condensate. Nature 450, 268–271 (2007)
Colombe, Y. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)
Blatt, R. & Wineland, D. J. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)
Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)
Daley, A. J., Fedichev, P. O. & Zoller, P. Single-atom cooling by superfluid immersion: a nondestructive method for qubits. Phys. Rev. A 69, 022306 (2004)
Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)
Recati, A., Fedichev, P. O., Zwerger, W., von Delft, J. & Zoller, P. Atomic quantum dots coupled to a reservoir of a superfluid Bose-Einstein condensate. Phys. Rev. Lett. 94, 040404 (2005)
Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979)
Abrikosov, A. & Gorkov, L. Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP 12, 1243–1253 (1961)
Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997)
Pan, S. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000)
Makarov, O. P., Côté, R., Michels, H. & Smith, W. W. Radiative charge-transfer lifetime of the excited state of NaCa+. Phys. Rev. A 67, 042705 (2003)
Côté, R., Kharchenko, V. & Lukin, M. D. Mesoscopic molecular ions in Bose-Einstein condensates. Phys. Rev. Lett. 89, 093001 (2002)
Massignan, P., Pethick, C. J. & Smith, H. Static properties of positive ions in atomic Bose-Einstein condensates. Phys. Rev. A 71, 023606 (2005)
Goold, J., Doerk-Bending, H., Calarco, T. & Busch, T. Ion induced density bubble in a strongly correlated one dimensional gas. Preprint at 〈http://arxiv1.library.cornell.edu/abs/0908.3179〉 (2009)
Kollath, C., Köhl, M. & Giamarchi, T. Scanning tunneling microscopy for ultracold atoms. Phys. Rev. A 76, 063602 (2007)
Sherkunov, Y., Muzykantskii, B., d’Ambrumenil, N. & Simons, B. D. Probing ultracold Fermi atoms with a single ion. Phys. Rev. A 79, 023604 (2009)
Idziaszek, Z., Calarco, T. & Zoller, P. Controlled collisions of a single atom and an ion guided by movable trapping potentials. Phys. Rev. A 76, 033409 (2007)
Côté, R. & Dalgarno, A. Ultracold atom-ion collisions. Phys. Rev. A 62, 012709 (2000)
Idziaszek, Z., Calarco, T., Julienne, P. S. & Simoni, A. Quantum theory of ultracold atom-ion collisions. Phys. Rev. A 79, 010702 (2009)
Soldán, P. & Hutson, J. M. Interaction of NH(X3Σ-) molecules with rubidium atoms: implications for sympathetic cooling and the formation of extremely polar molecules. Phys. Rev. Lett. 92, 163202 (2004)
Treutlein, P., Hunger, D., Camerer, S., Hänsch, T. W. & Reichel, J. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip. Phys. Rev. Lett. 99, 140403 (2007)
Larson, D. J., Bergquist, J. C., Bollinger, J. J., Itano, W. M. & Wineland, D. J. Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70–73 (1986)
Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009)
Major, F. G. & Dehmelt, H. G. Exchange-collision technique for the rf spectroscopy of stored ions. Phys. Rev. 170, 91–107 (1968)
Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009)
DeVoe, R. G. Power-law distributions for a trapped ion interacting with a classical buffer gas. Phys. Rev. Lett. 102, 063001 (2009)
Sun, J., Rambow, O. & Si, Q. Orthogonality catastrophe in Bose-Einstein condensates. Preprint at 〈http://arxiv.org/abs/cond-mat/0404590〉 (2004)
Balzer, C. et al. Electrodynamically trapped Yb+ ions for quantum information processing. Phys. Rev. A 73, 041407 (2006)
Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998)
Epstein, R. J. et al. Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)
Wesenberg, J. H. et al. Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)
Acknowledgements
We are grateful to N. Cooper, C. Kollath, D. Lucas, D. Moehring, E. Peik and C. Wunderlich for discussions. We acknowledge support from the Engineering and Physical Sciences Research Council, the European Research Council (grant number 240335) and the Herchel Smith Fund (C.S.).
Author Contributions All authors contributed to the design, to data acquisition and to the interpretation of the presented work. C.Z. and S.P. contributed equally to the construction of the apparatus and to the acquisition of the data.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Zipkes, C., Palzer, S., Sias, C. et al. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010). https://doi.org/10.1038/nature08865
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature08865
This article is cited by
-
Collision detection with logic
Nature Physics (2022)
-
Dynamics of a Tracer Particle Interacting with Excitations of a Bose–Einstein Condensate
Annales Henri Poincaré (2022)
-
Quantum thermometry in electromagnetic field of cosmic string spacetime
Quantum Information Processing (2022)
-
Micro–micro and micro–macro entanglement witnessing via the geometric phase in an impurity-doped Bose–Einstein condensate
Quantum Information Processing (2022)
-
Ionic polaron in a Bose-Einstein condensate
Communications Physics (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.