Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deviations from a uniform period spacing of gravity modes in a massive star

Subjects

Abstract

The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution1. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars2. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum3. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The light curve of HD 50230 measured by the CoRoT satellite.
Figure 2: Extracted frequency spectrum in the g mode region.
Figure 3: The components and values of the g mode period spacing.
Figure 4: The influence of the size of the convective mixing region on the mean value of the period spacing.

Similar content being viewed by others

References

  1. Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 solar masses at Z = 0.020 and Z = 0.001. Astron. Astrophys. Suppl. Ser. 96, 269–331 (1992)

    ADS  Google Scholar 

  2. Maeder, A. Physics, Formation and Evolution of Rotating Stars (Springer, 2009)

    Book  Google Scholar 

  3. Miglio, A., Montalban, J., Noels, A. & Eggenberger, P. Probing the properties of convective cores through g modes: high-order g modes in SPB and Gamma Doradus stars. Mon. Not. R. Astron. Soc. 386, 1487–1502 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Auvergne, M. et al. The CoRoT satellite in flight: description and performance. Astron. Astrophys. 506, 411–424 (2009)

    Article  ADS  Google Scholar 

  5. Aerts, C., Christensen-Dalsgaard, J. & Kurtz, D. W. Asteroseismology (Springer, 2009)

    Google Scholar 

  6. Leighton, R. B., Noyes, R. W. & Simon, G. W. Velocity fields in the solar atmosphere. Astrophys. J. 135, 474–499 (1962)

    Article  ADS  Google Scholar 

  7. Ulrich, R. K. The five-minute oscillations on the solar surface. Astrophys. J. 162, 993–1002 (1970)

    Article  ADS  Google Scholar 

  8. Leibacher, J. W. & Stein, R. F. A new description of the solar five-minute oscillation. Astrophys. Lett. 7, 191–192 (1971)

    ADS  Google Scholar 

  9. Deubner, F. L. Observations of low wavenumber nonradial eigenmodes of the sun. Astron. Astrophys. 44, 371–375 (1975)

    ADS  Google Scholar 

  10. Christensen-Dalsgaard, J. Helioseismology. Rev. Mod. Phys. 74, 1073–1129 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Chaplin, W. J. & Basu, S. Perspectives in global helioseismology and the road ahead. Sol. Phys. 1–2, 53–75 (2008)

    Article  ADS  Google Scholar 

  12. Bedding, T. R. & Kjeldsen, H. Solar-like oscillations. Publ. Astron. Soc. Aust. 2, 203–212 (2003)

    Article  ADS  Google Scholar 

  13. De Ridder, J. et al. Non-radial oscillation modes with long lifetimes in giant stars. Nature 459, 398–400 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Michel, E. et al. CoRoT measures solar-like oscillations and granulation in stars hotter than the sun. Science 322, 558–560 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Waelkens, C. Slowly pulsating B stars. Astron. Astrophys. 246, 453–468 (1991)

    ADS  Google Scholar 

  16. Krisciunas, K. A new class of pulsating stars. Bull. Am. Astron. Soc. 25, 1442–1443 (1993)

    ADS  Google Scholar 

  17. Dupret, M. A. Nonradial nonadiabatic stellar pulsations. Astron. Astrophys. 366, 166–173 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Degroote, P. et al. CoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data. Astron. Astrophys. 506, 471–489 (2009)

    Article  ADS  Google Scholar 

  19. Tassoul, M. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469–490 (1980)

    Article  ADS  Google Scholar 

  20. Winget, D. E. et al. Asteroseismology of the DOV star PG 1159–035 with the Whole Earth Telescope. Astrophys. J. 378, 326–346 (1991)

    Article  ADS  Google Scholar 

  21. Winget, D. E. et al. Whole earth telescope observations of the DBV white dwarf GD358. Astrophys. J. 430, 839–849 (1994)

    Article  ADS  Google Scholar 

  22. Brassard, P., Fontaine, G., Wesemael, F. & Hansen, C. J. Adiabatic properties of pulsating DA white dwarfs. II — Mode trapping in compositionally stratified models. Astrophys. J. Suppl. Ser. 80, 369–401 (1992)

    Article  ADS  CAS  Google Scholar 

  23. Andersen, J., Clausen, J. V. & Nordstrom, B. New strong evidence for the importance of convective overshooting in intermediate-mass stars. Astrophys. J. 363, L33–L36 (1990)

    Article  ADS  Google Scholar 

  24. Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996)

    Article  ADS  Google Scholar 

  25. Raskin, G. & Van Winckel, H. Hermes, a high-resolution fiber-fed spectrograph for the Mercator Telescope. Proc. SPIE 7014, 178–189 (2008)

    ADS  Google Scholar 

  26. Scuflaire, R. et al. CLÉS, Code Liégeois d'Évolution Stellaire. Astrophys. Space Sci. 316, 83–91 (2008)

    Article  ADS  Google Scholar 

  27. Noels, A., Montalban, J., Miglio, A., Godart, M. & Ventura, P. Overshooting and semiconvection. Astrophys. Space Sci. 326, 233–243 (2009)

    Google Scholar 

  28. Aerts, C. et al. Asteroseismology of HD 129929: core overshooting and nonrigid rotation. Science 300, 1926–1928 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Aerts, C. Core overshooting and nonrigid internal rotation of massive stars. Proc. IAU 250, 237–244 (2008)

    ADS  Google Scholar 

  30. Aerts, C. & De Cat, P. Beta Cep stars from a spectroscopic point of view. Space Sci. Rev. 105, 453–492 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Community's Seventh Framework Programme (PROSPERITY), from the Research Council of KU Leuven and from the Belgian Federal Science Policy. The CoRoT space mission has been developed, and is operated by, CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany and Spain.

Author Contributions P.D. and C.A. analysed and interpreted the light curve; M.B., A.M., A.N. and J.M. computed theoretical models; P.D., M.B. and E.N. analysed spectroscopic data; S.B., R.O., M.V. and K.S. made spectroscopic observations; and A.B., M.A., F.B., C.C. and E.M. are the CoRoT instrument builders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Degroote.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This document describes in more detail the determination of the fundamental parameters, the frequency analysis and the period spacing extraction. It contains 3 supplementary figures, illustrating the determination of the fundamental parameters of the star, and providing an overview of the frequency content of the CoRoT light curve. A list of references relevant for the supplementary information only is added. (PDF 613 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degroote, P., Aerts, C., Baglin, A. et al. Deviations from a uniform period spacing of gravity modes in a massive star. Nature 464, 259–261 (2010). https://doi.org/10.1038/nature08864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08864

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing