Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells

Abstract

Engulfment of apoptotic cells occurs throughout life in multicellular organisms. Impaired apoptotic cell clearance (due to defective recognition, internalization or degradation) results in autoimmune disease1,2. One fundamental challenge in understanding how defects in corpse removal translate into diseased states is the identification of critical components orchestrating the different stages of engulfment. Here we use genetic, cell biological and molecular studies in Caenorhabditis elegans and mammalian cells to identify SAND-1 and its partner CCZ-1 as new factors in corpse removal. In worms deficient in either sand-1 or ccz-1, apoptotic cells are internalized and the phagosomes recruit the small GTPase RAB-5 but fail to progress to the subsequent RAB-7(+) stage. The mammalian orthologues of SAND-1, namely Mon1a and Mon1b, were similarly required for phagosome maturation. Mechanistically, Mon1 interacts with GTP-bound Rab5, identifying Mon1 as a previously unrecognized Rab5 effector. Moreover, a Mon1–Ccz1 complex (but not either protein alone) could bind Rab7 and could also influence Rab7 activation, suggesting Mon1–Ccz1 as an important link in progression from the Rab5-positive stage to the Rab7-positive stage of phagosome maturation. Taken together, these data identify SAND-1 (Mon1) and CCZ-1 (Ccz1) as critical and evolutionarily conserved components regulating the processing of ingested apoptotic cell corpses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAND-1 and CCZ-1 are required for the removal of apoptotic cell corpses in the adult hermaphrodite gonad.
Figure 2: Phagosomes are arrested at the RAB-5(+) stage in sand-1 mutant worms.
Figure 3: Mon1 is required for phagosome acidification and is recruited to phagosomes containing apoptotic cells.
Figure 4: A Mon1–Ccz1 complex is a Rab5 effector that links activated Rab5 to Rab7 recruitment and GDI displacement.

Similar content being viewed by others

References

  1. Albert, M. L. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nature Rev. Immunol. 4, 223–231 (2004)

    Article  CAS  Google Scholar 

  2. Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007)

    Article  CAS  Google Scholar 

  3. Lettre, G. & Hengartner, M. O. Developmental apoptosis in C. elegans: a complex CEDnario. Nature Rev. Mol. Cell Biol. 7, 97–108 (2006)

    Article  CAS  Google Scholar 

  4. Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999)

    CAS  PubMed  Google Scholar 

  5. Kinchen, J. M. & Hengartner, M. O. Tales of cannibalism, suicide, and murder: Programmed cell death in C. elegans . Curr. Top. Dev. Biol. 65, 1–45 (2005)

    CAS  PubMed  Google Scholar 

  6. Mangahas, P. M. & Zhou, Z. Clearance of apoptotic cells in Caenorhabditis elegans . Semin. Cell Dev. Biol. 16, 295–306 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Kinchen, J. M. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nature Cell Biol. 10, 556–566 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Gengyo-Ando, K. et al. The SM protein VPS-45 is required for RAB-5-dependent endocytic transport in Caenorhabditis elegans . EMBO Rep. 8, 152–157 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poteryaev, D., Fares, H., Bowerman, B. & Spang, A. Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J. 26, 301–312 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoeppner, D. J. et al. eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans . Dev. Biol. 274, 125–138 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans . Cell 104, 43–56 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Huynh, K. K. et al. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313–324 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kinchen, J. M. & Ravichandran, K. S. Phagosome maturation: going through the acid test. Nature Rev. Mol. Cell Biol. 9, 781–795 (2008)

    Article  CAS  Google Scholar 

  15. Hackam, D. J. et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J. Biol. Chem. 272, 29810–29820 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Lettre, G. et al. Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans . Cell Death Differ. 11, 1198–1203 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Yu, X., Lu, N. & Zhou, Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol. 6, e61 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu, X., Odera, S., Chuang, C. H., Lu, N. & Zhou, Z. C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev. Cell 10, 743–757 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Lu, Q. et al. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 135, 1069–1080 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Li, W. et al. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development 136, 2445–2455 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Wang, C. W., Stromhaug, P. E., Kauffman, E. J., Weisman, L. S. & Klionsky, D. J. Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage. J. Cell Biol. 163, 973–985 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, J. et al. Mycobacterium bovis BCG disrupts the interaction of Rab7 with RILP contributing to inhibition of phagosome maturation. J. Leukoc. Biol. 82, 1437–1445 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. D’Adamo, P. et al. Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nature Genet. 19, 134–139 (1998)

    Article  PubMed  Google Scholar 

  25. Jekely, G., Sung, H. H., Luque, C. M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9, 197–207 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Mosesson, Y., Mills, G. B. & Yarden, Y. Derailed endocytosis: an emerging feature of cancer. Nature Rev. Cancer 8, 835–850 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Rock, K. L. & Shen, L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev. 207, 166–183 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Gruenberg, J. & van der Goot, F. G. Mechanisms of pathogen entry through the endosomal compartments. Nature Rev. Mol. Cell Biol. 7, 495–504 (2006)

    Article  CAS  Google Scholar 

  29. Kinchen, J. M. et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans . Nature 434, 93–99 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Grimsley, C. M., Lu, M., Haney, L. B., Kinchen, J. M. & Ravichandran, K. S. Characterization of a novel interaction between ELMO1 and ERM proteins. J. Biol. Chem. 281, 5928–5937 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng, Y., Press, B. & Wandinger-Ness, A. Rab 7: an important regulator of late endocytic membrane traffic. J. Cell Biol. 131, 1435–1452 (1995)

    Article  CAS  PubMed  Google Scholar 

  33. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Tosello-Trampont, A. C. et al. Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells. Cell Death Differ. 14, 963–972 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. Tosello-Trampont, A. C., Brugnera, E. & Ravichandran, K. S. Evidence for a conserved role for CRKII and Rac in engulfment of apoptotic cells. J. Biol. Chem. 276, 13797–13802 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Casanova, C. Grimsley and members of the Ravichandran laboratory for helpful conversations; the Caenorhabditis Genetics Consortium (CGC) for nematode strains; A. Wandinger-Ness for Rab7 expression constructs; and J. Redick and S. Guillot of the Advanced Microscopy Facility for the preparation of specimens for electron microscopy. This work was supported by a post-doctoral fellowship via an NIH T32 Immunology Training Grant and American Heart Association Award (to J.M.K.), and grants from the NIGMS/NIH (to K.S.R.). K.S.R. is a William Benter Senior Fellow of the American Asthma Foundation.

Author Contributions J.M.K. performed all the experiments. J.M.K and K.S.R. planned and analysed the experimental results and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason M. Kinchen or Kodi S. Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S12 with legends and Supplementary Table S1. (PDF 7990 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinchen, J., Ravichandran, K. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464, 778–782 (2010). https://doi.org/10.1038/nature08853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08853

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing