Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanism of multivesicular body biogenesis by ESCRT complexes

Abstract

When internalized receptors and other cargo are destined for lysosomal degradation, they are ubiquitinated and sorted by the endosomal sorting complex required for transport (ESCRT) complexes 0, I, II and III into multivesicular bodies. Multivesicular bodies are formed when cargo-rich patches of the limiting membrane of endosomes bud inwards by an unknown mechanism and are then cleaved to yield cargo-bearing intralumenal vesicles. The biogenesis of multivesicular bodies was reconstituted and visualized using giant unilamellar vesicles, fluorescent ESCRT-0, -I, -II and -III complexes, and a membrane-tethered fluorescent ubiquitin fusion as a model cargo. Here we show that ESCRT-0 forms domains of clustered cargo but does not deform membranes. ESCRT-I and ESCRT-II in combination deform the membrane into buds, in which cargo is confined. ESCRT-I and ESCRT-II localize to the bud necks, and recruit ESCRT-0-ubiquitin domains to the buds. ESCRT-III subunits localize to the bud neck and efficiently cleave the buds to form intralumenal vesicles. Intralumenal vesicles produced in this reaction contain the model cargo but are devoid of ESCRTs. The observations explain how the ESCRTs direct membrane budding and scission from the cytoplasmic side of the bud without being consumed in the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model cargo clustering by ESCRT-0.
Figure 2: ESCRT-I and ESCRT-II induce membrane buds and confine cargo in them.
Figure 3: ESCRT-I and ESCRT-II localize to the necks of membrane buds.
Figure 4: ESCRT-0 Ub domains co-localize with ESCRT-I–II membrane buds.
Figure 5: ESCRT-III localizes to bud necks for membrane scission.
Figure 6: Molecular mechanism of MVB biogenesis.

Similar content being viewed by others

References

  1. Haigler, H. T., McKanna, J. A. & Cohen, S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth-factor in human carcinoma-cells A-431. J. Cell Biol. 81, 382–395 (1979)

    Article  CAS  Google Scholar 

  2. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004)

    Article  CAS  Google Scholar 

  3. Piper, R. C. & Katzmann, D. J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547 (2007)

    Article  CAS  Google Scholar 

  4. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001)

    Article  CAS  Google Scholar 

  5. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002)

    Article  CAS  Google Scholar 

  6. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002)

    Article  CAS  Google Scholar 

  7. Bowers, K. & Stevens, T. H. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae . Biochim. Biophys. Acta 1744, 438–454 (2005)

    Article  CAS  Google Scholar 

  8. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004)

    Article  CAS  Google Scholar 

  9. Fujii, K., Hurley, J. H. & Freed, E. O. Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nature Rev. Microbiol. 5, 912–916 (2007)

    Article  CAS  Google Scholar 

  10. Bieniasz, P. D. The cell biology of HIV-1 virion genesis. Cell Host Microbe 5, 550–558 (2009)

    Article  CAS  Google Scholar 

  11. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007)

    Article  CAS  Google Scholar 

  13. Samson, R. Y. & Bell, S. D. Ancient ESCRTs and the evolution of binary fission. Trends Microbiol. 17, 507–513 (2009)

    Article  CAS  Google Scholar 

  14. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular Bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008)

    Article  CAS  Google Scholar 

  16. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Pires, R. et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843–856 (2009)

    Article  CAS  Google Scholar 

  19. Bajorek, M. et al. Structural basis for ESCRT-III protein autoinhibition. Nature Struct. Mol. Biol. 16, 754–762 (2009)

    Article  CAS  Google Scholar 

  20. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008)

    Article  CAS  Google Scholar 

  21. Hanson, P. I., Shim, S. & Merrill, S. A. Cell biology of the ESCRT machinery. Curr. Opin. Cell Biol. 21, 568–574 (2009)

    Article  CAS  Google Scholar 

  22. Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants - evidence for a prevacuolar compartment in class-E vps mutants. Mol. Biol. Cell 3, 1389–1402 (1992)

    Article  CAS  Google Scholar 

  23. Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7, 985–999 (1996)

    Article  CAS  Google Scholar 

  24. Doyotte, A., Russell, M. R. G., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian ‘class E’ compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci. 118, 3003–3017 (2005)

    Article  CAS  Google Scholar 

  25. Nickerson, D. P., West, M. & Odorizzi, G. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J. Cell Biol. 175, 715–720 (2006)

    Article  CAS  Google Scholar 

  26. Falguières, T. et al. In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101. Mol. Biol. Cell 19, 4942–4955 (2008)

    Article  Google Scholar 

  27. Tran, J. H., Chen, C. J., Emr, S. & Schekman, R. Cargo sorting into multivesicular bodies in vitro . Proc. Natl Acad. Sci. USA 106, 17395–17400 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002)

    Article  CAS  Google Scholar 

  29. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002)

    Article  CAS  Google Scholar 

  30. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002)

    Article  CAS  Google Scholar 

  31. Mizuno, E., Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell 14, 3675–3689 (2003)

    Article  CAS  Google Scholar 

  32. Bache, K. G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003)

    Article  CAS  Google Scholar 

  33. Ren, X. & Hurley, J. H. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 10.1038/emboj.2010.6 (11 February 2010)

  34. Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005)

    Article  CAS  Google Scholar 

  35. Hurley, J. H., Lee, S. & Prag, G. Ubiquitin binding domains. Biochem. J. 399, 361–372 (2006)

    Article  CAS  Google Scholar 

  36. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001)

    Article  CAS  Google Scholar 

  37. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002)

    Article  CAS  Google Scholar 

  38. Shields, S. B. et al. ESCRT ubiquitin binding domains function cooperatively during MVB cargo sorting. J. Cell Biol. 185, 213–224 (2009)

    Article  CAS  Google Scholar 

  39. Alam, S. L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411–1421 (2004)

    Article  CAS  Google Scholar 

  40. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003)

    Article  CAS  Google Scholar 

  41. Bilodeau, P. S., Winistorfer, S. C., Kearney, W. R., Robertson, A. D. & Piper, R. C. Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J. Cell Biol. 163, 237–243 (2003)

    Article  CAS  Google Scholar 

  42. Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009)

    Article  CAS  Google Scholar 

  43. Im, Y. J., Wollert, T., Boura, E. & Hurley, J. H. Structure and function of the ESCRT-II–III interface in multivesicular body biogenesis. Dev. Cell 17, 234–243 (2009)

    Article  CAS  Google Scholar 

  44. Lenz, M., Crow, D. J. G. & Joanny, J. F. Membrane buckling induced by curved filaments. Phys. Rev. Lett. 103, 038101 (2009)

    Article  ADS  Google Scholar 

  45. Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007)

    Article  CAS  Google Scholar 

  46. Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485–498 (2007)

    Article  CAS  Google Scholar 

  47. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008)

    Article  CAS  Google Scholar 

  48. Murk, J. L. A. N. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100, 13332–13337 (2003)

    Article  ADS  CAS  Google Scholar 

  49. Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: Crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559–569 (2004)

    Article  CAS  Google Scholar 

  50. Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004)

    Article  ADS  CAS  Google Scholar 

  51. Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008)

    Article  ADS  CAS  Google Scholar 

  52. Angelova, M. I. & Dimitrov, D. S. Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Boura for producing the CFP–Ub and GFP–Ub, J. Lippincott-Schwartz for microscope access, B. Wendland for a yeast strain and advice, and W. Prinz for comments on the manuscript. This work was funded by the Intramural Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases and Intramural AIDS Targeted Antiviral Program to J.H.H. and an EMBO long-term fellowship to T.W.

Author Contributions T.W. carried out all experiments; T.W. and J.H.H. designed experiments and analysed data; and J.H.H. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Hurley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary References and Supplementary Figures 1-8 with legends. (PDF 4487 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollert, T., Hurley, J. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010). https://doi.org/10.1038/nature08849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08849

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing