Haploid plants produced by centromere-mediated genome elimination

Abstract

Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding1,2,3. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants4, but many species and genotypes are recalcitrant to this process2,5. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization6,7,8,9,10,11. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss12,13,14. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Haploid Arabidopsis thaliana produced by crossing plants expressing altered CENH3 to wild type.
Figure 2: Haploid Arabidopsis thaliana yield spontaneous diploid progeny.
Figure 3: A natural Arabidopsis tetraploid converted to diploid by centromere-mediated genome elimination.

References

  1. 1

    Dunwell, J. M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. (in the press)

  2. 2

    Forster, B. P., Heberle-Bors, E., Kasha, K. J. & Touraev, A. The resurgence of haploids in higher plants. Trends Plant Sci. 12, 368–375 (2007)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Forster, B. P. & Thomas, W. T. B. in Plant Breeding Reviews (ed. Janick, J.) 57–88 (John Wiley & Sons, 2005)

    Google Scholar 

  4. 4

    Guha, S. & Maheshwari, S. C. In vitro production of embryos from anthers of Datura . Nature 204, 497 (1964)

    ADS  Article  Google Scholar 

  5. 5

    Wedzony, M. et al. in Advances in Haploid Production in Higher Plants (eds Touraev, A., Forster, B. P. & Jain, S. M.) 1–33 (Springer, 2009)

    Google Scholar 

  6. 6

    Bains, G. S. & Howard, H. W. Haploid plants of Solanum demissum . Nature 166, 795 (1950)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. 7

    Barclay, I. R. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256, 410–411 (1975)

    ADS  Article  Google Scholar 

  8. 8

    Burk, L. G., Gerstel, D. U. & Wernsman, E. A. Maternal haploids of Nicotiana tabacum L. from seed. Science 206, 585 (1979)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Clausen, R. E. & Mann, M. C. Inheritance of Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progenies. Proc. Natl Acad. Sci. USA 10, 121–124 (1924)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. 10

    Hougas, H. W. & Peloquin, S. J. A haploid plant of the potato variety Katahdin. Nature 180, 1209–1210 (1957)

    ADS  Article  Google Scholar 

  11. 11

    Kasha, K. J. & Kao, K. N. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225, 874–876 (1970)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12

    Bennett, M. D., Finch, R. A. & Barclay, I. R. The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54, 175–200 (1976)

    Article  Google Scholar 

  13. 13

    Finch, R. A. Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88, 386–393 (1983)

    Article  Google Scholar 

  14. 14

    Laurie, D. A. & Bennett, M. D. The timing of chromosome elimination in hexaploid wheat x maize crosses. Genome 32, 953–961 (1989)

    Article  Google Scholar 

  15. 15

    Talbert, P. B., Masuelli, R., Tyagi, A. P., Comai, L. & Henikoff, S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053–1066 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Henikoff, S. & Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15, 177–184 (2005)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Henry, I. M. et al. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170, 1979–1988 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Chase, S. S. Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot. Rev. 35, 117–168 (1969)

    Article  Google Scholar 

  19. 19

    Jauhar, P. P., Dogramaci-Altuntepe, M., Peterson, T. S. & Almouslem, A. B. Seedset on synthetic haploids of durum wheat: cytological and molecular investigations. Crop Sci. 40, 1742–1749 (2000)

    Article  Google Scholar 

  20. 20

    Avetisov, V. A. Production of haploids during in vitro culturing of Arabidopsis thaliana (L.) Heynh anthers and isolated protoplasts. Genetika 12, 17–25 (1976)

    Google Scholar 

  21. 21

    Scholl, R. & Amos, J. A. Isolation of doubled-haploid plants through anther culture. Z. Pflanzenphysiol. 96, 407–414 (1980)

    Article  Google Scholar 

  22. 22

    Udall, J. A. & Wendel, J. F. Polyploidy and crop improvement. Crop Sci. 46, S3–S14 (2006)

    Article  Google Scholar 

  23. 23

    Heppich, S., Tunner, H. G. & Greilhuber, J. Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta . Theor. Appl. Genet. 61, 101–104 (1982)

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Jin, W. et al. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16, 571–581 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Coe, E. H. A line of maize with high haploid frequency. Am. Nat. 93, 381–382 (1959)

    Article  Google Scholar 

  26. 26

    Hagberg, A. & Hagberg, G. High frequency of spontaneous haploids in the progeny of an induced mutation in barley. Hereditas 93, 341–343 (1980)

    Article  Google Scholar 

  27. 27

    Kermicle, J. L. Androgenesis conditioned by a mutation in maize. Science 166, 1422–1424 (1969)

    ADS  CAS  Article  PubMed  Google Scholar 

  28. 28

    Evans, M. M. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19, 46–62 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Ori, N., Eshed, Y., Chuck, G., Bowman, J. L. & Hake, S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523–5532 (2000)

    CAS  PubMed  Google Scholar 

  30. 30

    Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Comai, L. & Henikoff, S. TILLING: practical single-nucleotide mutation discovery. Plant J. 45, 684–694 (2006)

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Francis, K. E., Lam, S. Y. & Copenhaver, G. P. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol. 142, 1004–1013 (2006)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Bushell, C., Spielman, M. & Scott, R. J. The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 15, 1430–1442 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Paul, W., Hodge, R., Smartt, S., Draper, J. & Scott, R. The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol. Biol. 19, 611–622 (1992)

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Ross, K. J., Fransz, P. & Jones, G. H. A light microscopic atlas of meiosis in Arabidopsis thaliana . Chromosome Res. 4, 507–516 (1996)

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Josefsson, C., Dilkes, B. & Comai, L. Parent-dependent loss of gene silencing during interspecies hybridization. Curr. Biol. 16, 1322–1328 (2006)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Comai, D. Melters, J. Maloof and J. Ramahi for comments on the manuscript; and R. McNeilage, R. Clarke, P. Kwong and J. Stewart for technical assistance. This work was supported by a grant from the Hellman Family Foundation to S.W.L.C., and by the University of California, Davis.

Author Contributions M.R. and S.W.L.C. designed the study, performed the experiments, analysed the data and wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simon W. L. Chan.

Ethics declarations

Competing interests

The University of California, Davis, has filed a provisional patent application in the USA that is based on results described in the manuscript. M.R. and S.W.L.C. are listed as co-inventors on this application.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S8 with legends, Supplementary Table S1 and Supplementary References. (PDF 9461 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ravi, M., Chan, S. Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615–618 (2010). https://doi.org/10.1038/nature08842

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing