Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotope fractionation in silicate melts by thermal diffusion

Abstract

The phenomenon of thermal diffusion (mass diffusion driven by a temperature gradient, known as the Ludwig–Soret effect1,2) has been investigated for over 150 years, but an understanding of its underlying physical basis remains elusive. A significant hurdle in studying thermal diffusion has been the difficulty of characterizing it. Extensive experiments over the past century have established that the Soret coefficient, ST (a single parameter that describes the steady-state result of thermal diffusion), is highly sensitive to many factors3,4,5,6,7,8,9. This sensitivity makes it very difficult to obtain a robust characterization of thermal diffusion, even for a single material. Here we show that for thermal diffusion experiments that span a wide range in composition and temperature, the difference in ST between isotopes of diffusing elements that are network modifiers (iron, calcium and magnesium) is independent of the composition and temperature. On the basis of this finding, we propose an additive decomposition for the functional form of ST and argue that a theoretical approach based on local thermodynamic equilibrium3,5,10 holds promise for describing thermal diffusion in silicate melts and other complex solutions. Our results lead to a simple and robust framework for characterizing isotope fractionation by thermal diffusion in natural and synthetic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal-diffusion isotopic sensitivity and concentration steady state of time-series experiments (ZM70 and ZM71)6.
Figure 2: Cross-correlations of magnesium, iron and calcium isotope ratios for both the thermal diffusion experiments of refs 6, 16 and previous work.
Figure 3: Distribution of isotope concentrations and isotope ratios against Δ T for thermal diffusion experiments with a wide range of melt compositions and bulk temperatures.

Similar content being viewed by others

References

  1. Ludwig, C. Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen. Sitz. Math. Naturwiss. Classe Kaiserlichen Akad. Wiss. 20, 539 (1856)

    Google Scholar 

  2. Soret, C. Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portées à des températures différentes. Arch. Sci. Phys. Nat. 2, 48–61 (1879)

    Google Scholar 

  3. Astumian, R. D. Coupled transport at the nanoscale: the unreasonable effectiveness of equilibrium theory. Proc. Natl Acad. Sci. USA 104, 3–4 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Debuschewitz, C. & Köhler, W. Molecular origin of thermal diffusion in benzene + cyclohexane mixtures. Phys. Rev. Lett. 87, 055901 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Duhr, S. & Braun, D. Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 96, 168301 (2006)

    Article  ADS  Google Scholar 

  6. Lesher, C. E. & Walker, D. Solution properties of silicate liquids from thermal diffusion experiments. Geochim. Cosmochim. Acta 50, 1397–1411 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Platten, J. K. The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Putnam, S. A., Cahill, D. G. & Wong, G. C. L. Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir 23, 9221–9228 (2007)

    Article  CAS  Google Scholar 

  9. Tyrrell, H. J. V. Diffusion and Heat Flow in Liquids (Butterworth, 1961)

    Google Scholar 

  10. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proc. Natl Acad. Sci. USA 103, 19678–19682 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Braun, D. & Libchaber, A. Thermal force approach to molecular evolution. Phys. Biol. 1, 1–8 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Severinghaus, J. P., Grachev, A. & Battle, M. Thermal fractionation of air in polar firn by seasonal temperature gradients. Geochem. Geophys. Geosyst. 2, 1048 (2001)

    Article  ADS  Google Scholar 

  13. Severinghaus, J. P. et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1999)

    Article  ADS  Google Scholar 

  14. Lundstrom, C. C. Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining. Geochim. Cosmochim. Acta 73, 5709–5729 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Groot, S. R. D. Thermodynamics of Irreversible Processes 111–118 (North-Holland, 1959)

    Google Scholar 

  16. Lesher, C. E. & Walker, D. in Diffusion, Atomic Ordering, and Mass Transport (ed. Ganguly, J.) 396–451 (Adv. Phys. Geochem. 8, Springer, 1991)

    Book  Google Scholar 

  17. Richter, F. M. et al. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim. Cosmochim. Acta 73, 4250–4263 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Richter, F. M. et al. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim. Cosmochim. Acta 72, 206–220 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Wittko, G. & Kohler, W. Universal isotope effect in thermal diffusion of mixtures containing cyclohexane and cyclohexane-d12. J. Chem. Phys. 123, 014506 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Wittko, G. & Kohler, W. On the temperature dependence of thermal diffusion of liquid mixtures. Europhys. Lett. 78, 46007 (2007)

    Article  ADS  Google Scholar 

  21. Furry, W. H., Jones, R. C. & Onsager, L. On the theory of isotope separation by thermal diffusion. Phys. Rev. 55, 1083–1095 (1939)

    Article  ADS  CAS  Google Scholar 

  22. Kyser, T. K., Lesher, C. E. & Walker, D. The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contrib. Mineral. Petrol. 133, 373–381 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Ott, A. Isotope separation by thermal diffusion in liquid metal. Science 164, 297 (1969)

    Article  ADS  CAS  Google Scholar 

  24. Reith, D. & Muller-Plathe, F. On the nature of thermal diffusion in binary Lennard-Jones liquids. J. Chem. Phys. 112, 2436–2453 (2000)

    Article  ADS  CAS  Google Scholar 

  25. LaTourrette, T., Wasserburg, G. J. & Fahey, A. J. Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim. Cosmochim. Acta 60, 1329–1340 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Lesher, C. E. Kinetics of Sr and Nd exchange in silicate liquids theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J. Geophys. Res. 99, 9585–9604 (1994)

    Article  ADS  CAS  Google Scholar 

  27. van der Laan, S., Zhang, Y., Kennedy, A. K. & Wyllie, P. J. Comparison of element and isotope diffusion of K and Ca in multicomponent silicate melts. Earth Planet. Sci. Lett. 123, 155–166 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Lesher, C. E. Decoupling of chemical and isotopic exchange during magma mixing. Nature 344, 235–237 (1990)

    Article  ADS  CAS  Google Scholar 

  29. Zhang, Y. A modified effective binary diffusion model. J. Geophys. Res. 98, 11901–11920 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Huang, F. et al. Chemical and isotopic fractionation of wet andesite in a temperature gradient: experiments and models suggesting a new mechanism of magma differentiation. Geochim. Cosmochim. Acta 73, 729–749 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Huang, F. et al. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. Chem. Geol. 268, 15–23 (2009)

    Article  ADS  CAS  Google Scholar 

  32. Holmden, C. & Bélanger, N. Ca isotope cycling in a forested ecosystem. Geochim. Cosmochim. Acta 74, 995–1015 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Science Foundation grants NSF EAR 0609726 and NSF EAR 0944169 (C.C.L.), and NSF EAR 0943991 (C.E.L.). The multi-collector inductively-coupled-plasma mass spectrometry laboratory at the University of Illinois at Urbana-Champaign is supported by NSF EAR 0732481. P.C. acknowledges support from a Roscoe G. Jackson II Research Fellowship. P.C. and S.W.K. acknowledge support from S.W.K.’s Walgreen Chair funds. We thank B. Fouke for use of his micro-drilling system, Z. Zhang and X. Li for analytical assistance, V. Kariwala for help with references and Y. Zhang for a review of this work.

Author Contributions F.H. led the analytical effort and P.C. led the theoretical treatment of the results. C.E.L. performed the laboratory thermal diffusion experiments. J.J.G.G. assisted with iron and magnesium isotope analyses and C.H. measured calcium isotopes. P.C. and F.H. wrote the manuscript and Supplementary Information with contributions from C.C.L., C.H., S.W.K., J.J.G.G. and C.E.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Lundstrom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Supplementary Table and Supplementary Notes. (PDF 139 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Chakraborty, P., Lundstrom, C. et al. Isotope fractionation in silicate melts by thermal diffusion. Nature 464, 396–400 (2010). https://doi.org/10.1038/nature08840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08840

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing