Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tropical cyclones and permanent El Niño in the early Pliocene epoch


Tropical cyclones (also known as hurricanes and typhoons) are now believed to be an important component of the Earth’s climate system1,2,3. In particular, by vigorously mixing the upper ocean, they can affect the ocean’s heat uptake, poleward heat transport, and hence global temperatures. Changes in the distribution and frequency of tropical cyclones could therefore become an important element of the climate response to global warming. A potential analogue to modern greenhouse conditions, the climate of the early Pliocene epoch (approximately 5 to 3 million years ago) can provide important clues to this response. Here we describe a positive feedback between hurricanes and the upper-ocean circulation in the tropical Pacific Ocean that may have been essential for maintaining warm, El Niño-like conditions4,5,6 during the early Pliocene. This feedback is based on the ability of hurricanes to warm water parcels that travel towards the Equator at shallow depths and then resurface in the eastern equatorial Pacific as part of the ocean’s wind-driven circulation7,8. In the present climate, very few hurricane tracks intersect the parcel trajectories; consequently, there is little heat exchange between waters at such depths and the surface. More frequent and/or stronger hurricanes in the central Pacific imply greater heating of the parcels, warmer temperatures in the eastern equatorial Pacific, warmer tropics and, in turn, even more hurricanes. Using a downscaling hurricane model9,10, we show dramatic shifts in the tropical cyclone distribution for the early Pliocene that favour this feedback. Further calculations with a coupled climate model support our conclusions. The proposed feedback should be relevant to past equable climates and potentially to contemporary climate change.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in SSTs in the Pacific over the past 5 million years.
Figure 2: The tracks of tropical cyclones simulated by the SDSM.
Figure 3: Ocean wind-driven circulation and the PDI for tropical cyclones.
Figure 4: SST changes in the tropical Pacific simulated by the coupled model.
Figure 5: Evolution of the equatorial SST gradient in three coupled experiments.


  1. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Webster, P., Holland, G., Curry, J. & Chang, H. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Sriver, R. L. & Huber, M. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature 447, 577–580 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Molnar, P. & Cane, M. A. El Niño's tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography 17 1021 1029/2001PA000663 (2002)

    Article  ADS  Google Scholar 

  5. Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene warm period. Science 309, 758–761 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Fedorov, A. et al. The Pliocene paradox (mechanisms for a permanent El Nino). Science 312, 1485–1489 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Gu, D. & Philander, S. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275, 805–807 (1997)

    Article  CAS  Google Scholar 

  8. Barreiro, M., Fedorov, A. V., Pacanowski, R. C. & Philander, S. G. Abrupt climate changes: how the freshening of the northern Atlantic affects the thermohaline and wind-driven oceanic circulations. Annu. Rev. Earth Planet. Sci. 36, 33–58 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Emanuel, K., Ravela, S., Vivant, E. & Risi, C. A statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 87, 299–314 (2006)

    Article  ADS  Google Scholar 

  10. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming — results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 89, 347–367 (2008)

    Article  ADS  Google Scholar 

  11. Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A. & Held, I. M. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geosci. 1, 359–364 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Emanuel, K. A simple model of multiple climate regimes. J. Geophys. Res. D 107 4077 10.1029/2001JD001002 (2002)

    Article  ADS  Google Scholar 

  13. Korty, R. L., Emanuel, K. A. & Scott, J. R. Tropical cyclone-induced upper-ocean mixing and climate: application to equable climates. J. Clim. 21, 638–654 (2008)

    Article  ADS  Google Scholar 

  14. Robinson, M. M., Dowsett, H. J. & Chandler, M. A. Pliocene role in assessing future climate impacts. Eos 89, 501–502 (2008)

    Article  ADS  Google Scholar 

  15. Pagani, M., Lui, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci. 3, 27–30 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Thompson, R. S. & Fleming, R. F. Middle Pliocene vegetation: reconstructions, paleoclimatic inferences, and boundary conditions for climate modelling. Mar. Micropaleontol. 27, 27–49 (1996)

    Article  ADS  Google Scholar 

  17. Dowsett, H. J. et al. Middle Pliocene Paleoenvironmental Reconstruction: PRISM2 236 (Open File Rep. 99-535, USGS Geological Survey, 1999)

    Google Scholar 

  18. Haywood, A. & Valdes, P. Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth Planet. Sci. Lett. 218, 363–377 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Dowsett, H. J. & Robinson, M. M. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective. Phil. Trans. R. Soc. A 367, 109–125 (2009)

    Article  ADS  Google Scholar 

  20. Brierley, C. M. & Fedorov, A. V. The relative importance of meridional and zonal SST gradients for the onset of the Ice Ages and Pliocene-Pleistocene climate evolution. Paleoceanography 10.1029/2009PA001809 (in the press)

  21. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Dekens, P. S., Ravelo, A. C. & McCarthy, M. D. Warm upwelling regions in the Pliocene warm period. Paleoeanography 22 10.1029/2006PA001394 (2007)

  23. Marlow, J., Lange, C., Wefer, G. & Rosell-Mele, A. Upwelling intensification as part of the Pliocene-Pleistocene climate transition. Science 290, 2288–2291 (2000)

    ADS  CAS  PubMed  Google Scholar 

  24. Haywood, A. M., Dekens, P., Ravelo, A. C. & Williams, M. Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM. Geochem. Geophys. Geosyst. 6 Q03010 10.1029/2004GC000799 (2005)

    Article  ADS  Google Scholar 

  25. D'Asaro, E. A. The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr. 33, 561–579 (2003)

    Article  ADS  Google Scholar 

  26. Jacob, S., Shay, L., Mariano, A. & Black, P. The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr. 30, 1407–1429 (2000)

    Article  ADS  Google Scholar 

  27. Woodruff, J. D., Donnelly, J. P., Emanuel, K. & Lane, P. Assessing sedimentary records of paleohurricane activity using modelled hurricane climatology. Geochem. Geophys. Geosyst. 9 Q09V10 10.1029/2008GC002043 (2008)

    Article  Google Scholar 

  28. McCreary, J. & Lu, P. Interaction between the subtropical and equatorial ocean circulations — the subtropical cell. J. Phys. Oceanogr. 24, 466–497 (1994)

    Article  Google Scholar 

  29. Fedorov, A. & Philander, S. Is El Niño changing? Science 288, 1997–2002 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Jansen, M. & Ferrari, R. Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett. 36 L06604 10.1029/2008GL036796 (2009)

    Article  ADS  Google Scholar 

  31. Guilyardi, E. et al. Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–339 (2009)

    Article  ADS  Google Scholar 

  32. Tziperman, E. & Farrell, B. Pliocene equatorial temperature: lessons from atmospheric superrotation. Paleoceanography 24 PA1101 10.1029/2008PA001652 (2009)

    Article  ADS  Google Scholar 

  33. Haug, G., Tiedemann, R., Zahn, R. & Ravelo, A. Role of Panama uplift on oceanic freshwater balance. Geology 29, 207–210 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D 108 4407 10.1029/2002JD002670 (2003)

    Article  ADS  Google Scholar 

  36. Collins, W. D. et al. The formulation and atmospheric simulation of the Community Atmosphere Model: CAM3. J. Clim. 19, 2144–2161 (2006)

    Article  ADS  Google Scholar 

  37. Hack, J. J. et al. CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Clim. 19, 2267–2289 (2006)

    Article  ADS  Google Scholar 

  38. Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006)

    Article  ADS  Google Scholar 

  39. Randall, D. A. et al. in Climate Change 2007: The Physical Science Basis (eds Susan, S. et al.) 589–662 (Cambridge Univ. Press, 2007)

    Google Scholar 

Download references


We thank G. Philander, M. Barreiro, R. Pacanowski, C. Ravelo, P. deMenocal, T. Herbert, Y. Rosenthal, K. Lawrence, P. Dekens, A. Haywood, C. Wunsch and M. Huber for numerous discussions and encouragement. Financial support was provided by grants to A.V.F. from the NSF, the Department of Energy Office of Science, and the David and Lucile Packard Foundation. We thank B. Dobbins for help with computer simulations. This research used resources of the National Energy Research Scientific Computing Center.

Author Contributions A.V.F. and C.M.B. contributed equally to the writing and ideas in this paper. The original idea for this study belongs to A.V.F. C.M.B. conducted experiments with CAM3 and CCSM3. K.E. conducted calculations with the SDSM and provided expertise in the physics of tropical cyclones.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexey V. Fedorov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-4 with Legends. (PDF 2791 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fedorov, A., Brierley, C. & Emanuel, K. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463, 1066–1070 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing