Letter | Published:

Exploring the thermodynamics of a universal Fermi gas

Nature volume 463, pages 10571060 (25 February 2010) | Download Citation

Abstract

One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit1,2. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap3,4,5, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories6,7,8,9,10,11,12,13,14,15. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system16,17,18, our equation of state at zero temperature has a 2 per cent accuracy and extends work19,20 on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons10,18,20,21,22.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)

  2. 2.

    , & eds. Proc. Int. School of Physics Enrico Fermi (Course CLXIV, IOS Press, Amsterdam, 2006)

  3. 3.

    , , & Potential energy of a 40K Fermi gas in the BCS-BEC crossover. Phys. Rev. Lett. 97, 220406 (2006)

  4. 4.

    , , , & Measurement of the entropy and critical temperature of a strongly interacting Fermi gas. Phys. Rev. Lett. 98, 080402 (2007)

  5. 5.

    & Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys. 154, 1–29 (2009)

  6. 6.

    , , & Critical temperature and thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96, 160402 (2006)

  7. 7.

    , & Spin 1/2 fermions in the unitary regime: a superfluid of a new type. Phys. Rev. Lett. 96, 090404 (2006)

  8. 8.

    , , & Thermodynamics of the BCS-BEC crossover. Phys. Rev. A 75, 023610 (2007)

  9. 9.

    , & Particle distribution tail and related energy formula. Phys. Rev. A 79, 053640 (2009)

  10. 10.

    , , & Normal state of a polarized Fermi gas at unitarity. Phys. Rev. Lett. 97, 200403 (2006)

  11. 11.

    , & Virial expansion for a strongly correlated Fermi gas. Phys. Rev. Lett. 102, 160401 (2009)

  12. 12.

    Universality in a 2-component Fermi system at finite temperature. Phys. Rev. Lett. 98, 090403 (2007)

  13. 13.

    , , & Normal state of highly polarized Fermi gases: simple many-body approaches. Phys. Rev. Lett. 98, 180402 (2007)

  14. 14.

    & Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008)

  15. 15.

    & Fermi-polaron problem: diagrammatic Monte Carlo method for divergent sign-alternating series. Phys. Rev. B 77, 020408 (2008)

  16. 16.

    , , , & Observation of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett. 97, 030401 (2006)

  17. 17.

    , , , & Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006)

  18. 18.

    et al. Collective oscillations of an imbalanced Fermi gas: axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009)

  19. 19.

    , , & Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2008)

  20. 20.

    Determination of the equation of state of a polarized Fermi gas at unitarity. Phys. Rev. A 77, 041603 (2008)

  21. 21.

    Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006)

  22. 22.

    , , & Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009)

  23. 23.

    & Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nature Phys. 6, 131–134 (2010)

  24. 24.

    et al. Collisional stability of 40K immersed in a strongly interacting Fermi gas of 6Li. Phys. Rev. Lett. 103, 223203 (2009)

  25. 25.

    & High temperature expansion applied to fermions near Feshbach resonance. Phys. Rev. Lett. 92, 160404 (2004)

  26. 26.

    , , & BCS BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005)

  27. 27.

    , , & Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401 (2003)

  28. 28.

    , & Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature. Phys. Rev. A 78, 023625 (2008)

  29. 29.

    & Renormalization group theory for the imbalanced Fermi gas. Phys. Rev. Lett. 100, 140407 (2008)

  30. 30.

    , , , & Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas. Preprint at 〈〉 (2009)

  31. 31.

    , & Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

  32. 32.

    et al. Critical temperature and condensate fraction of a fermion pair condensate. Phys. Rev. Lett. 101, 180406 (2008)

  33. 33.

    & Phase separation in a polarized Fermi gas at zero temperature. Phys. Rev. Lett. 100, 030401 (2008)

  34. 34.

    , , & Measurement of universal thermodynamic functions for a unitary Fermi gas. Science 327, 442–445 (2010)

Download references

Acknowledgements

We are grateful to R. Combescot, X. Leyronas, Y. Castin, A. Recati, S. Stringari, S. Giorgini, M. Zwierlein and T. Giamarchi for discussions and to C. Cohen-Tannoudji, J. Dalibard, F. Gerbier and G. Shlyapnikov for critical reading of the manuscript. We acknowledge support from ESF (Euroquam), SCALA, ANR FABIOLA, Région Ile de France (IFRAF), ERC and Institut Universitaire de France.

Author Contributions S.N. and N.N. contributed equally to this work. S.N., N.N. and K.J.J. took the experimental data, and all authors contributed to the data analysis and writing of the manuscript.

Author information

Affiliations

  1. Laboratoire Kastler Brossel, CNRS, UPMC, École Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

    • S. Nascimbène
    • , N. Navon
    • , K. J. Jiang
    • , F. Chevy
    •  & C. Salomon

Authors

  1. Search for S. Nascimbène in:

  2. Search for N. Navon in:

  3. Search for K. J. Jiang in:

  4. Search for F. Chevy in:

  5. Search for C. Salomon in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S. Nascimbène.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Figure 1 and Legend, a Supplementary Discussion and Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature08814

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.