Exploring the thermodynamics of a universal Fermi gas

Abstract

One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit1,2. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap3,4,5, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories6,7,8,9,10,11,12,13,14,15. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system16,17,18, our equation of state at zero temperature has a 2 per cent accuracy and extends work19,20 on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons10,18,20,21,22.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of the universal function h(η, ζ).
Figure 2: Schematic representation of our atomic sample.
Figure 3: Equation of state of a spin-balanced unitary Fermi gas.
Figure 4: Equation of state of the zero-temperature spin-imbalanced unitary gas h(η , 0).

References

  1. 1

    Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)

    ADS  Article  Google Scholar 

  2. 2

    Inguscio, M., Ketterle, W. & Salomon, C. eds. Proc. Int. School of Physics Enrico Fermi (Course CLXIV, IOS Press, Amsterdam, 2006)

    Google Scholar 

  3. 3

    Stewart, J., Gaebler, J., Regal, C. & Jin, D. Potential energy of a 40K Fermi gas in the BCS-BEC crossover. Phys. Rev. Lett. 97, 220406 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Luo, L., Clancy, B., Joseph, J., Kinast, J. & Thomas, J. Measurement of the entropy and critical temperature of a strongly interacting Fermi gas. Phys. Rev. Lett. 98, 080402 (2007)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Luo, L. & Thomas, J. Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys. 154, 1–29 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Burovski, E., Prokofev, N., Svistunov, B. & Troyer, M. Critical temperature and thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96, 160402 (2006)

    ADS  Article  Google Scholar 

  7. 7

    Bulgac, A., Drut, J. & Magierski, P. Spin 1/2 fermions in the unitary regime: a superfluid of a new type. Phys. Rev. Lett. 96, 090404 (2006)

    ADS  Article  Google Scholar 

  8. 8

    Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS-BEC crossover. Phys. Rev. A 75, 023610 (2007)

    ADS  Article  Google Scholar 

  9. 9

    Combescot, R., Alzetto, F. & Leyronas, X. Particle distribution tail and related energy formula. Phys. Rev. A 79, 053640 (2009)

    ADS  Article  Google Scholar 

  10. 10

    Lobo, C., Recati, A., Giorgini, S. & Stringari, S. Normal state of a polarized Fermi gas at unitarity. Phys. Rev. Lett. 97, 200403 (2006)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Liu, X., Hu, H. & Drummond, P. Virial expansion for a strongly correlated Fermi gas. Phys. Rev. Lett. 102, 160401 (2009)

    ADS  Article  Google Scholar 

  12. 12

    Rupak, G. Universality in a 2-component Fermi system at finite temperature. Phys. Rev. Lett. 98, 090403 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Combescot, R., Recati, A., Lobo, C. & Chevy, F. Normal state of highly polarized Fermi gases: simple many-body approaches. Phys. Rev. Lett. 98, 180402 (2007)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Combescot, R. & Giraud, S. Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Prokof'ev, N. & Svistunov, B. Fermi-polaron problem: diagrammatic Monte Carlo method for divergent sign-alternating series. Phys. Rev. B 77, 020408 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Shin, Y., Zwierlein, M., Schunck, C., Schirotzek, A. & Ketterle, W. Observation of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett. 97, 030401 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Partridge, G., Li, W., Kamar, R., Liao, Y. & Hulet, R. Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Nascimbene, S. et al. Collective oscillations of an imbalanced Fermi gas: axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Shin, Y., Schunck, C., Schirotzek, A. & Ketterle, W. Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Shin, Y. Determination of the equation of state of a polarized Fermi gas at unitarity. Phys. Rev. A 77, 041603 (2008)

    ADS  Article  Google Scholar 

  21. 21

    Chevy, F. Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006)

    ADS  Article  Google Scholar 

  22. 22

    Schirotzek, A., Wu, C.-H., Sommer, A. & Zwierlein, M. W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Ho, T.-L. & Zhou, Q. Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nature Phys. 6, 131–134 (2010)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Spiegelhalder, F. et al. Collisional stability of 40K immersed in a strongly interacting Fermi gas of 6Li. Phys. Rev. Lett. 103, 223203 (2009)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ho, T.-L. & Mueller, E. High temperature expansion applied to fermions near Feshbach resonance. Phys. Rev. Lett. 92, 160404 (2004)

    ADS  Article  Google Scholar 

  26. 26

    Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Carlson, J., Chang, S., Pandharipande, V. & Schmidt, K. Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401 (2003)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bulgac, A., Drut, J. & Magierski, P. Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature. Phys. Rev. A 78, 023625 (2008)

    ADS  Article  Google Scholar 

  29. 29

    Gubbels, K. & Stoof, H. Renormalization group theory for the imbalanced Fermi gas. Phys. Rev. Lett. 100, 140407 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Riedl, S., Guajardo, E., Kohstall, C., Denschlag, J. & Grimm, R. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas. Preprint at 〈http://arXiv.org/abs/0907.3814〉 (2009)

  31. 31

    Greiner, M., Regal, C. & Jin, D. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Inada, Y. et al. Critical temperature and condensate fraction of a fermion pair condensate. Phys. Rev. Lett. 101, 180406 (2008)

    ADS  Article  Google Scholar 

  33. 33

    Pilati, S. & Giorgini, S. Phase separation in a polarized Fermi gas at zero temperature. Phys. Rev. Lett. 100, 030401 (2008)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Horikoshi, M., Nakajima, S., Ueda, M. & Mukaiyama, T. Measurement of universal thermodynamic functions for a unitary Fermi gas. Science 327, 442–445 (2010)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Combescot, X. Leyronas, Y. Castin, A. Recati, S. Stringari, S. Giorgini, M. Zwierlein and T. Giamarchi for discussions and to C. Cohen-Tannoudji, J. Dalibard, F. Gerbier and G. Shlyapnikov for critical reading of the manuscript. We acknowledge support from ESF (Euroquam), SCALA, ANR FABIOLA, Région Ile de France (IFRAF), ERC and Institut Universitaire de France.

Author Contributions S.N. and N.N. contributed equally to this work. S.N., N.N. and K.J.J. took the experimental data, and all authors contributed to the data analysis and writing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Nascimbène.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 and Legend, a Supplementary Discussion and Supplementary References. (PDF 154 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nascimbène, S., Navon, N., Jiang, K. et al. Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010). https://doi.org/10.1038/nature08814

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing