Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Changes in Hox genes’ structure and function during the evolution of the squamate body plan

Abstract

Hox genes are central to the specification of structures along the anterior–posterior body axis1,2, and modifications in their expression have paralleled the emergence of diversity in vertebrate body plans3,4. Here we describe the genomic organization of Hox clusters in different reptiles and show that squamates have accumulated unusually large numbers of transposable elements at these loci5, reflecting extensive genomic rearrangements of coding and non-coding regulatory regions. Comparative expression analyses between two species showing different axial skeletons, the corn snake and the whiptail lizard, revealed major alterations in Hox13 and Hox10 expression features during snake somitogenesis, in line with the expansion of both caudal and thoracic regions. Variations in both protein sequences and regulatory modalities of posterior Hox genes suggest how this genetic system has dealt with its intrinsic collinear constraint to accompany the substantial morphological radiation observed in this group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization of the posterior HoxD cluster.
Figure 2: Expression patterns of Hox13 and Hox10 genes in snake and lizard embryos.
Figure 3: Comparison of vertebrate HOX10 protein sequences.
Figure 4: Evolutionary modifications of the posterior Hox system in the whiptail lizard and corn snake.

Similar content being viewed by others

Accession codes

Data deposits

Sequences of genes described in this paper are deposited in GenBank under accession numbers GU320304 to GU320335.

References

  1. Kmita, M. & Duboule, D. Organizing axes in time and space; 25 years of colinear tinkering. Science 301, 331–333 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Deschamps, J. & van Nes, J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132, 2931–2942 (2005)

    Article  CAS  Google Scholar 

  3. Gaunt, S. J. Conservation in the Hox code during morphological evolution. Int. J. Dev. Biol. 38, 549–552 (1994)

    CAS  PubMed  Google Scholar 

  4. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995)

    CAS  PubMed  Google Scholar 

  5. Di Poi, N., Montoya-Burgos, J. I. & Duboule, D. Atypical relaxation of structural constraints in Hox gene clusters of the green anole lizard. Genome Res. 19, 602–610 (2009)

    Article  CAS  Google Scholar 

  6. Duboule, D. The rise and fall of Hox gene clusters. Development 134, 2549–2560 (2007)

    Article  CAS  Google Scholar 

  7. Garcia-Fernandez, J. The genesis and evolution of homeobox gene clusters. Nature Rev. Genet. 6, 881–892 (2005)

    Article  CAS  Google Scholar 

  8. Lemons, D. & McGinnis, W. Genomic evolution of Hox gene clusters. Science 313, 1918–1922 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Hoffstetter, R. & Gasc, J. P. in Biology of the Reptilia (eds Gans, C., d’A. Bellair, A. & Parsons, T. S.) Vol. 1, 201–310 (Academic, 1969)

    Google Scholar 

  11. Romer, A. S. Osteology of the Reptiles (Krieger Publishing Co., 1997)

    Google Scholar 

  12. Duellman, W. E. & Trueb, L. Biology of Amphibians (Johns Hopkins University Press, 1994)

    Google Scholar 

  13. Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Woltering, J. M. et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev. Biol. 332, 82–89 (2009)

    Article  CAS  Google Scholar 

  15. Kmita, M., Tarchini, B., Duboule, D. & Herault, Y. Evolutionary conserved sequences are required for the insulation of the vertebrate Hoxd complex in neural cells. Development 129, 5521–5528 (2002)

    Article  CAS  Google Scholar 

  16. Herault, Y., Beckers, J., Kondo, T., Fraudeau, N. & Duboule, D. Genetic analysis of a Hoxd-12 regulatory element reveals global versus local modes of controls in the HoxD complex. Development 125, 1669–1677 (1998)

    CAS  PubMed  Google Scholar 

  17. Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007)

    Article  CAS  Google Scholar 

  18. Godwin, A. R. & Capecchi, M. R. Hoxc13 mutant mice lack external hair. Genes Dev. 12, 11–20 (1998)

    Article  CAS  Google Scholar 

  19. Carapuço, M., Novoa, A., Bobola, N. & Mallo, M. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev. 19, 2116–2121 (2005)

    Article  Google Scholar 

  20. Kohlsdorf, T. et al. A molecular footprint of limb loss: sequence variation of the autopodial identity gene Hoxa-13 . J. Mol. Evol. 67, 581–593 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Muragaki, Y., Mundlos, S., Upton, J. & Olsen, B. Altered growth and branching patterns in synpolydactyly caused by mutations in Hoxd13 . Science 272, 548–551 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Wellik, D. M. & Capecchi, M. R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301, 363–367 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Suemori, H. & Noguchi, S. HoxC cluster genes are dispensable for overall body plan of mouse embryonic development. Dev. Biol. 220, 333–342 (2000)

    Article  CAS  Google Scholar 

  24. Young, T. et al. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev. Cell 17, 516–526 (2009)

    Article  CAS  Google Scholar 

  25. Lynch, V. J. et al. Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc. Natl Acad. Sci. USA 105, 14928–14933 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Scott, V., Morgan, E. A. & Stadler, H. S. Genitourinary functions of Hoxa13 and Hoxd13. J. Biochem. 137, 671–676 (2005)

    Article  CAS  Google Scholar 

  27. Wiens, J. J. & Slingluff, J. L. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution 55, 2303–2318 (2001)

    Article  CAS  Google Scholar 

  28. Raynaud, A. Preliminary data on the body lenghthening and somitogenesis in young embryos of Anguis fragilis L. and of Lacerta viridis Laur. Bull. Soc. Hist. Nat. Toulouse 130, 47–52 (1994)

    Google Scholar 

  29. Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007)

    Article  CAS  Google Scholar 

  30. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Schmitz for sharing squamate tissues; A. Debry and F. Chabaud for technical assistance; and members of the Duboule and Milinkovitch laboratories for discussions and reagents. This work was supported by funds from the University of Geneva and the Federal Institute of Technology in Lausanne, the Swiss National Research Fund, the National Research Center (NCCR) ‘Frontiers in Genetics’, the EU programme ‘Crescendo’ and the ERC grant SystemsHox.ch (to D.D.).

Author Contributions N.D.P. and D.D. designed the experiments and analysed the data. N.D.P. performed the experiments except those involving the tuatara, which were conducted by H.M. J.I.M.B. performed the phylogenetic analyses. M.C.M. produced and prepared snake embryos and O.P. provided snake and lizard embryos. N.D.P. and D.D. wrote the paper, and all co-authors contributed in the form of discussion and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Duboule.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-8 with Legends and Supplementary Table 1. (PDF 2073 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di-Poï, N., Montoya-Burgos, J., Miller, H. et al. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature 464, 99–103 (2010). https://doi.org/10.1038/nature08789

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08789

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing