Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variability in gene expression underlies incomplete penetrance

Abstract

The phenotypic differences between individual organisms can often be ascribed to underlying genetic and environmental variation. However, even genetically identical organisms in homogeneous environments vary, indicating that randomness in developmental processes such as gene expression may also generate diversity. To examine the consequences of gene expression variability in multicellular organisms, we studied intestinal specification in the nematode Caenorhabditis elegans in which wild-type cell fate is invariant and controlled by a small transcriptional network. Mutations in elements of this network can have indeterminate effects: some mutant embryos fail to develop intestinal cells, whereas others produce intestinal precursors. By counting transcripts of the genes in this network in individual embryos, we show that the expression of an otherwise redundant gene becomes highly variable in the mutants and that this variation is subjected to a threshold, producing an ON/OFF expression pattern of the master regulatory gene of intestinal differentiation. Our results demonstrate that mutations in developmental networks can expose otherwise buffered stochastic variability in gene expression, leading to pronounced phenotypic variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression in the C. elegans intestinal cell fate specification network.
Figure 2: Expression dynamics in wild-type and skn-1 mutant embryos.
Figure 3: High levels of end-1 are required for elt-2 expression in skn-1 mutant embryos.
Figure 4: Chromatin regulators and indirect network connections regulate variability in end-1 expression.

Similar content being viewed by others

References

  1. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans . Genetics 96, 435–454 (1980)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Laubichler, M. & Sarkur, S. in Mutating Concepts, Evolving Disciplines: Genetics, Medicine and Society (eds Parker, L. S. & Ankeny, R. A.) 63–85 (Kluwer, 2002)

    Book  Google Scholar 

  3. Romaschoff, D. D. Über die Variabilität in der Manifestierung eines erblichen Merkmales (Abdomen abnormalis) bei Drosophila funebris F. J. Psychol. Neurol. 31, 323–325 (1925)

    Google Scholar 

  4. Timoféeff-Ressovsky, N. W. Über den Einfluss des Genotypus auf das phänotypen Auftreten eines einzelnes Gens. J. Psychol. Neurol. 31, 305–310 (1925)

    Google Scholar 

  5. Vogt, O. Psychiatrisch wichtige Tatsachen der zoologisch-botanischen Systematik. Zeitschrift für die gesamte . Neurol. Psychiatr. (Bucur.) 101, 805–832 (1926)

    Article  Google Scholar 

  6. Raj, A. & Van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008)

    Article  CAS  Google Scholar 

  7. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis . Science 317, 526–529 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  Google Scholar 

  10. Süel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M. B. Tunability and noise dependence in differentiation dynamics. Science 315, 1716–1719 (2007)

    Article  ADS  Google Scholar 

  11. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Hume, D. A. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323–2328 (2000)

    CAS  PubMed  Google Scholar 

  13. Wernet, M. F. et al. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440, 174–180 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Raj, A., van den Bogaard, P., Rifkin, S. A., Van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5, 877–879 (2008)

    Article  CAS  Google Scholar 

  15. Fukushige, T., Hawkins, M. G. & McGhee, J. D. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev. Biol. 198, 286–302 (1998)

    CAS  PubMed  Google Scholar 

  16. McGhee, J. et al. ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev. Biol. 327, 551–565 (2009)

    Article  CAS  Google Scholar 

  17. McGhee, J. D. et al. The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev. Biol. 302, 627–645 (2007)

    Article  CAS  Google Scholar 

  18. Maduro, M. F., Meneghini, M. D., Bowerman, B., Broitman-Maduro, G. & Rothman, J. H. Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3β homolog is mediated by MED-1 and -2 in C. elegans . Mol. Cell 7, 475–485 (2001)

    Article  CAS  Google Scholar 

  19. Maduro, M. F., Broitman-Maduro, G., Mengarelli, I. & Rothman, J. H. Maternal deployment of the embryonic SKN-1→MED-1,2 cell specification pathway in C. elegans . Dev. Biol. 301, 590–601 (2007)

    Article  CAS  Google Scholar 

  20. Zhu, J. et al. end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev. 11, 2883–2896 (1997)

    Article  CAS  Google Scholar 

  21. Zhu, J., Fukushige, T., McGhee, J. D. & Rothman, J. H. Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev. 12, 3809–3814 (1998)

    Article  CAS  Google Scholar 

  22. Maduro, M. F. et al. Genetic redundancy in endoderm specification within the genus Caenorhabditis . Dev. Biol. 284, 509–522 (2005)

    Article  CAS  Google Scholar 

  23. Fukushige, T., Hendzel, M. J., Bazett-Jones, D. P. & McGhee, J. D. Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc. Natl Acad. Sci. USA 96, 11883–11888 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Bowerman, B., Eaton, B. A. & Priess, J. R. skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68, 1061–1075 (1992)

    Article  CAS  Google Scholar 

  25. Maduro, M. Structure and evolution of the C. elegans embryonic endomesoderm network. Biochim. Biophys. Acta 1789, 250–260 (2009)

    Article  CAS  Google Scholar 

  26. McGhee, J. D. The C. elegans intestine. WormBook 1–36 〈http://www.wormbook.org/chapters/www_intestine/intestine.html〉 (2007)

  27. Goszczynski, B. & McGhee, J. D. Reevaluation of the role of the med-1 and med-2 genes in specifying the Caenorhabditis elegans endoderm. Genetics 171, 545–555 (2005)

    Article  CAS  Google Scholar 

  28. Seydoux, G. & Fire, A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans . Development 120, 2823–2834 (1994)

    CAS  PubMed  Google Scholar 

  29. Lin, R., Thompson, S. & Priess, J. R. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83, 599–609 (1995)

    Article  CAS  Google Scholar 

  30. Calvo, D. et al. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO J. 20, 7197–7208 (2001)

    Article  CAS  Google Scholar 

  31. Maduro, M. F., Kasmir, J. J., Zhu, J. & Rothman, J. H. The Wnt effector POP-1 and the PAL-1/Caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development. Dev. Biol. 285, 510–523 (2005)

    Article  CAS  Google Scholar 

  32. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006)

    Article  Google Scholar 

  33. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Voss, T. C., John, S. & Hager, G. L. Single-cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription. Mol. Endocrinol. 20, 2641–2655 (2006)

    Article  CAS  Google Scholar 

  35. Shi, Y. & Mello, C. A. CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans . Genes Dev. 12, 943–955 (1998)

    Article  CAS  Google Scholar 

  36. Walker, A. K. et al. A conserved transcription motif suggesting functional parallels between Caenorhabditis elegans SKN-1 and Cap’n’Collar-related basic leucine zipper proteins. J. Biol. Chem. 275, 22166–22171 (2000)

    Article  CAS  Google Scholar 

  37. Chubb, J., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006)

    Article  CAS  Google Scholar 

  38. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005)

    Article  CAS  Google Scholar 

  39. Peccoud, J. & Ycart, B. Markovian modelling of gene product synthesis. Theor. Popul. Biol. 48, 222–234 (1995)

    Article  Google Scholar 

  40. Nowak, M. A., Boerlijst, M. C., Cooke, J. & Smith, J. M. Evolution of genetic redundancy. Nature 388, 167–171 (1997)

    Article  ADS  CAS  Google Scholar 

  41. Maduro, M. F., Lin, R. & Rothman, J. H. Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression. Dev. Biol. 248, 128–142 (2002)

    Article  CAS  Google Scholar 

  42. Broitman-Maduro, G., Maduro, M. F. & Rothman, J. H. The noncanonical binding site of the MED-1 GATA factor defines differentially regulated target genes in the C. elegans mesendoderm. Dev. Cell 8, 427–433 (2005)

    Article  CAS  Google Scholar 

  43. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549–552 (2003)

    Article  ADS  CAS  Google Scholar 

  44. Wagner, G. P., Booth, G. & Bagheri-Chaichian, H. A population genetic theory of canalization. Evolution 51, 329–347 (1997)

    Article  Google Scholar 

  45. Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  ADS  CAS  Google Scholar 

  46. Levy, S. F. & Siegal, M. L. Network hubs buffer environmental variation in Saccharomyces cerevisiae . PLoS Biol. 6, e264 (2008)

    Article  Google Scholar 

  47. Waddington, C. H. Organisers and Genes (Cambridge Univ. Press, 1940)

    Google Scholar 

  48. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002)

    Article  ADS  CAS  Google Scholar 

  49. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998)

    Article  ADS  CAS  Google Scholar 

  50. Eldar, A. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–514 (2009)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. R. Horvitz for early discussions and technical assistance. We also thank H. R. Horvitz and J. Gore for a critical reading of the manuscript. This work was funded by a National Institutes of Health (NIH) Director’s Pioneer Award to A.v.O. A.R. was supported by a National Science Foundation MSPRF fellowship DMS-0603392 and a Burroughs-Wellcome Fund Career Award at the Scientific Interface. S.A.R. was supported by an NIH NRSA postdoctoral fellowship 5F32GM080966.

Author Contributions A.R. and S.A.R. performed the experiments. A.R., S.A.R. and E.A. constructed the GFP-labelled skn-1 strains. A.R., S.A.R. and A.v.O. designed the experiments, analysed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander van Oudenaarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-19 with Legends. (PDF 1617 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, A., Rifkin, S., Andersen, E. et al. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010). https://doi.org/10.1038/nature08781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08781

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing