Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A precision measurement of the gravitational redshift by the interference of matter waves


One of the central predictions of metric theories of gravity, such as general relativity, is that a clock in a gravitational potential U will run more slowly by a factor of 1 + U/c2, where c is the velocity of light, as compared to a similar clock outside the potential1. This effect, known as gravitational redshift, is important to the operation of the global positioning system2, timekeeping3,4 and future experiments with ultra-precise, space-based clocks5 (such as searches for variations in fundamental constants). The gravitational redshift has been measured using clocks on a tower6, an aircraft7 and a rocket8, currently reaching an accuracy of 7 × 10-5. Here we show that laboratory experiments based on quantum interference of atoms9,10 enable a much more precise measurement, yielding an accuracy of 7 × 10-9. Our result supports the view that gravity is a manifestation of space-time curvature, an underlying principle of general relativity that has come under scrutiny in connection with the search for a theory of quantum gravity11. Improving the redshift measurement is particularly important because this test has been the least accurate among the experiments that are required to support curved space-time theories1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atom interferometer and Raman beam splitter.
Figure 2: Absolute determinations of the gravitational redshift.

Similar content being viewed by others


  1. Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativity 9, 3 (2006); 〈

    Article  ADS  Google Scholar 

  2. Ashby, N. Relativity in the global positioning system. Living Rev. Relativity 6, 1 (2003); 〈

    Article  ADS  Google Scholar 

  3. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Pavlis, N. K. & Weiss, M. A. The relativistic gravitational redshift with 3×10-17 uncertainty at NIST, Boulder, Colorado. Metrologia 40, 66–73 (2003)

    Article  ADS  Google Scholar 

  5. Cacciapuoti, L. & Salomon, C. Space clocks and fundamental tests: the ACES experiment. Eur. Phys. J. Spec. Top. 127, 57–68 (2009)

    Article  Google Scholar 

  6. Pound, R. V. & Snider, J. L. Effect of gravity on gamma radiation. Phys. Rev. 140, B788–B803 (1965)

    Article  ADS  Google Scholar 

  7. Hafele, J. C. & Keating, R. E. Around-the-world atomic clocks: observed relativistic time gains. Science 177, 168–170 (1972)

    Article  ADS  CAS  Google Scholar 

  8. Vessot, R. F. C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980)

    Article  ADS  Google Scholar 

  9. Peters, A., Chung, K. Y. & Chu, S. A measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Peters, A., Chung, K.-Y. & Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Amelino-Camelia, G., Macias, A. & Müller, H. in Gravitation and Cosmology (eds Macias, A., Lämmerzahl, C. & Nuñez, D.) 30 (AIP Conf. Proc. 758, American Institute of Physics, 2005)

    Google Scholar 

  12. Fortier, T. M. et al. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. Phys. Rev. Lett. 98, 070801 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Blatt, S. et al. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Phys. Rev. Lett. 100, 140801 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)

    Article  ADS  CAS  Google Scholar 

  15. Bordé, C. J., Karasiewicz, A. & Tourrenc General relativistic framework for atomic interferometry. Int. J. Mod. Phys. D 3, 157–161 (1994)

    Article  ADS  Google Scholar 

  16. Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 111102 (2007)

    Article  ADS  Google Scholar 

  17. Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008)

    Article  ADS  Google Scholar 

  18. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, 1970)

    Google Scholar 

  19. Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals (McGraw-Hill, 1965)

    MATH  Google Scholar 

  20. Fitch, V. L. The discovery of charge-conjugation parity asymmetry (Nobel Lecture). Rev. Mod. Phys. 53, 367–371 (1981)

    Article  ADS  Google Scholar 

  21. Good, M. L. K2 0 and the equivalence principle. Phys. Rev. 121, 311–313 (1961)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Ivanov, V. V. et al. Coherent delocalization of atomic wave packets in driven lattice potentials. Phys. Rev. Lett. 100, 043602 (2006)

    Article  ADS  Google Scholar 

  23. Cladé, P. et al. A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave. Europhys. Lett. 71, 730–736 (2005)

    Article  ADS  Google Scholar 

  24. Vitushkin, L. et al. Results of the sixth international comparison of absolute gravimeters. Metrologia 39, 407–424 (2002)

    Article  ADS  Google Scholar 

  25. Müller, H., Chiow, S.-w., Long, Q., Herrmann, S. & Chu, S. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100, 180405 (2008)

    Article  ADS  Google Scholar 

  26. Müller, H., Chiow, S.-w., Herrmann, S. & Chu, S. Atom interferometers with scalable enclosed area. Phys. Rev. Lett. 102, 240403 (2009)

    Article  ADS  Google Scholar 

  27. Young, B., Kasevich, M. & Chu, S. in Atom Interferometry (ed. Berman, P.) 363–406 (Academic, 1997)

    Book  Google Scholar 

  28. Dent Eötvös bounds on couplings of fundamental parameters to gravity. Phys. Rev. Lett. 101, 041102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lemoine, F. G. et al. The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96 (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1998)

    Google Scholar 

  30. Fuchs, K. & Soffel, H. in Landolt-Börnstein – Group V Geophysics Vol. 2a 317–321 (Springer, 1984)

    Google Scholar 

Download references


We thank F. Biraben, S.-w. Chiow, S. Herrmann, M. Hohensee, M. Kasevich, G. Tino and P. Wolf for discussions. This material is based on work supported by the National Science Foundation under grants 9320142, 0400866 and 0652332, by the Air Force Office of Scientific Research, and the Department of Energy. H.M. acknowledges support by the David and Lucile Packard Foundation and the National Institute of Standards and Technology under grant 60NANB9D9169. A.P. acknowledges support by the European Science Foundation’s EUROCORES program, the European Space Agency, and the German Space Agency DLR (grant DLR 50 WM 0346).

Author Contributions All authors made substantial contributions to this work. The manuscript was written by H.M. and S.C.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Holger Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, H., Peters, A. & Chu, S. A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing