Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate

Abstract

The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive1,2,3,4 and are likely to provide a positive feedback leading to amplified anthropogenic warming3. Owing to this feedback, at timescales ranging from interannual to the 20–100-kyr cycles of Earth's orbital variations1,5,6,7, warming of the climate system causes a net release of CO2 into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed γ), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections8,9. Here we quantify the median γ as 7.7 p.p.m.v. CO2 per °C warming, with a likely range of 1.7–21.4 p.p.m.v. CO2 per °C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO2 data from three ice cores, provide robust constraints for γ on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of >200,000 members, quantification of γ is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of γ calculated from any of ten coupled carbon–climate models, we find that γ is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P < 0.05) than recent pre-industrial empirical estimates of 40 p.p.m.v. CO2 per °C (refs 6, 7), and correspondingly suggest 80% less potential amplification of ongoing global warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temperature and CO 2 variability over the past millennium.
Figure 2: Long-term temperature variation, amplitude and uncertainty.
Figure 3: Estimates for γ.
Figure 4: Sensitivity in empirical and model estimates of γ.

References

  1. 1

    Woodwell, G. M. et al. Biotic feedbacks in the warming of the Earth. Clim. Change 40, 495–518 (1998)

  2. 2

    Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2 . Science 284, 464–467 (1999)

  3. 3

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000)

  4. 4

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008)

  5. 5

    Joos, F. & Prentice, I. in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World (eds Field, C. & Raupach, M.) 165–186 (Island Press, 2004)

  6. 6

    Scheffer, M., Brovkin, V. & Cox, P. M. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys. Res. Lett. 33 10.1029/2005gl025044 (2006)

  7. 7

    Cox, P. & Jones, C. Climate change — illuminating the modern dance of climate and CO2 . Science 321, 1642–1644 (2008)

  8. 8

    Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006)

  9. 9

    Plattner, G.-K. et al. Long-term climate commitments projected with climate-carbon cycle models. J. Clim. 21, 2721–2751 (2008)

  10. 10

    Huntingford, C. et al. Contributions of carbon cycle uncertainty to future climate projection spread. Tellus B 61, 355–360 (2009)

  11. 11

    Soloman, S. et al., eds. Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007)

  12. 12

    Gerber, S. et al. Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2 . Clim. Dyn. 20, 281–299 (2003)

  13. 13

    Hegerl, G., Crowley, T., Hyde, W. & Frame, D. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440, 1029–1032 (2006)

  14. 14

    Esper, J., Frank, D. C., Wilson, R. J. S. & Briffa, K. R. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett. 32 10.1029/2004gl021236 (2005)

  15. 15

    Von Storch, H. et al. Reconstructing past climate from noisy data. Science 306, 679–682 (2004)

  16. 16

    Frank, D., Büntgen, U., Böhm, R., Maugeri, M. & Esper, J. Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat. Sci. Rev. 26, 3298–3310 (2007)

  17. 17

    Siegenthaler, U. et al. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus B 57, 51–57 (2005)

  18. 18

    Tschumi, J. & Stauffer, B. Reconstructing past atmospheric CO2 concentration based on ice-core analyses: open questions due to in situ production of CO2 in the ice. J. Glaciol. 46, 45–53 (2000)

  19. 19

    Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. USA 105, 1425–1430 (2008)

  20. 20

    Strassmann, K. M., Joos, F. & Fischer, G. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B 60, 583–603 (2008)

  21. 21

    Pongratz, J., Reick, C. H., Raddatz, T. & Claussen, M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob. Biogeochem. Cycles 23 GB4001 10.1029/2009GB003488 (2009)

  22. 22

    MacDonald, G. M. et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, 285–288 (2006)

  23. 23

    Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2 . Clim. Change 90, 283–297 (2008)

  24. 24

    Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nature Geosci. 2, 484–487 (2009)

  25. 25

    Elsig, J. et al. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461, 507–510 (2009)

  26. 26

    Lee, T., Zwiers, F. & Tsao, M. Evaluation of proxy-based millennial reconstruction methods. Clim. Dyn. 31, 263–281 (2008)

  27. 27

    Esper, J. & Frank, D. The IPCC on a heterogeneous Medieval Warm Period. Clim. Change 94, 267–273 (2009)

  28. 28

    Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324 78–80 10.1126/science.1166349 (2009)

  29. 29

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005)

  30. 30

    Thornton, P. E. et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6, 2099–2120 (2009)

  31. 31

    Jones, P., Briffa, K., Barnett, T. & Tett, S. High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8, 455–471 (1998)

  32. 32

    Briffa, K. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat. Sci. Rev. 19, 87–105 (2000)

  33. 33

    Mann, M. E. & Jones, P. D. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 30 10.1029/2003gl017814 (2003)

  34. 34

    Moberg, A., Sonechkin, D., Holmgren, K., Datsenko, N. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433, 613–617 (2005)

  35. 35

    D'Arrigo, R., Wilson, R. & Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. 111 10.1029/2005jd006352 (2006)

  36. 36

    Hegerl, G. C. et al. Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Clim. 20, 650–666 (2007)

  37. 37

    Frank, D., Esper, J. & Cook, E. R. Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys. Res. Lett. 34 L16709 10.1029/2007gl030571 (2007)

  38. 38

    Juckes, M. N. et al. Millennial temperature reconstruction intercomparison and evaluation. Clim. Past. 3, 591–609 (2007)

  39. 39

    Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008)

  40. 40

    Esper, J., Cook, E. & Schweingruber, F. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–2253 (2002)

  41. 41

    Mann, M. E., Bradley, R. S. & Hughes, M. K. Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–762 (1999)

  42. 42

    Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J. Geophys. Res. 111 10.1029/2005jd006548 (2006)

  43. 43

    Cook, E. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981)

  44. 44

    Thompson, D., Kennedy, J., Wallace, J. & Jones, P. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453, 646–649 (2008)

  45. 45

    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996)

  46. 46

    MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33 10.1029/2006gl026152 (2006)

Download references

Acknowledgements

We thank P. Friedlingstein, R. Knutti and T. Stocker for comments, the C4MIP consortium for use of their model output, and the Swiss National Science Foundation (NCCR-Climate) and the European Union projects Carbo-Extreme (226701) and Millennium (017008) for funding.

Author Contributions D.C.F., J.E., C.C.R. and F.J. designed the study, with input from U.B. and V.T. D.C.F. and C.C.R. performed the analysis with input from F.J. and J.E. B.S. provided and interpreted results for land-use sensitivity experiments. All authors contributed to discussion, interpretation and writing the paper.

Author information

Correspondence to David C. Frank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S11 with Legends, Supplementary Tables S1-S3 and Supplementary References. (PDF 3537 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frank, D., Esper, J., Raible, C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010) doi:10.1038/nature08769

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.