Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate


The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive1,2,3,4 and are likely to provide a positive feedback leading to amplified anthropogenic warming3. Owing to this feedback, at timescales ranging from interannual to the 20–100-kyr cycles of Earth's orbital variations1,5,6,7, warming of the climate system causes a net release of CO2 into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed γ), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections8,9. Here we quantify the median γ as 7.7 p.p.m.v. CO2 per °C warming, with a likely range of 1.7–21.4 p.p.m.v. CO2 per °C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO2 data from three ice cores, provide robust constraints for γ on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of >200,000 members, quantification of γ is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of γ calculated from any of ten coupled carbon–climate models, we find that γ is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P < 0.05) than recent pre-industrial empirical estimates of 40 p.p.m.v. CO2 per °C (refs 6, 7), and correspondingly suggest 80% less potential amplification of ongoing global warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature and CO 2 variability over the past millennium.
Figure 2: Long-term temperature variation, amplitude and uncertainty.
Figure 3: Estimates for γ.
Figure 4: Sensitivity in empirical and model estimates of γ.

Similar content being viewed by others


  1. Woodwell, G. M. et al. Biotic feedbacks in the warming of the Earth. Clim. Change 40, 495–518 (1998)

    Article  CAS  Google Scholar 

  2. Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2 . Science 284, 464–467 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Joos, F. & Prentice, I. in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World (eds Field, C. & Raupach, M.) 165–186 (Island Press, 2004)

    Google Scholar 

  6. Scheffer, M., Brovkin, V. & Cox, P. M. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys. Res. Lett. 33 10.1029/2005gl025044 (2006)

  7. Cox, P. & Jones, C. Climate change — illuminating the modern dance of climate and CO2 . Science 321, 1642–1644 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006)

    Article  ADS  Google Scholar 

  9. Plattner, G.-K. et al. Long-term climate commitments projected with climate-carbon cycle models. J. Clim. 21, 2721–2751 (2008)

    Article  ADS  Google Scholar 

  10. Huntingford, C. et al. Contributions of carbon cycle uncertainty to future climate projection spread. Tellus B 61, 355–360 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Soloman, S. et al., eds. Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007)

    Google Scholar 

  12. Gerber, S. et al. Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2 . Clim. Dyn. 20, 281–299 (2003)

    Article  Google Scholar 

  13. Hegerl, G., Crowley, T., Hyde, W. & Frame, D. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440, 1029–1032 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Esper, J., Frank, D. C., Wilson, R. J. S. & Briffa, K. R. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett. 32 10.1029/2004gl021236 (2005)

  15. Von Storch, H. et al. Reconstructing past climate from noisy data. Science 306, 679–682 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Frank, D., Büntgen, U., Böhm, R., Maugeri, M. & Esper, J. Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat. Sci. Rev. 26, 3298–3310 (2007)

    Article  ADS  Google Scholar 

  17. Siegenthaler, U. et al. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus B 57, 51–57 (2005)

    Article  ADS  Google Scholar 

  18. Tschumi, J. & Stauffer, B. Reconstructing past atmospheric CO2 concentration based on ice-core analyses: open questions due to in situ production of CO2 in the ice. J. Glaciol. 46, 45–53 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. USA 105, 1425–1430 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Strassmann, K. M., Joos, F. & Fischer, G. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B 60, 583–603 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Pongratz, J., Reick, C. H., Raddatz, T. & Claussen, M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob. Biogeochem. Cycles 23 GB4001 10.1029/2009GB003488 (2009)

    Article  ADS  CAS  Google Scholar 

  22. MacDonald, G. M. et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, 285–288 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2 . Clim. Change 90, 283–297 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nature Geosci. 2, 484–487 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Elsig, J. et al. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461, 507–510 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lee, T., Zwiers, F. & Tsao, M. Evaluation of proxy-based millennial reconstruction methods. Clim. Dyn. 31, 263–281 (2008)

    Article  Google Scholar 

  27. Esper, J. & Frank, D. The IPCC on a heterogeneous Medieval Warm Period. Clim. Change 94, 267–273 (2009)

    Article  ADS  Google Scholar 

  28. Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324 78–80 10.1126/science.1166349 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Thornton, P. E. et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6, 2099–2120 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Jones, P., Briffa, K., Barnett, T. & Tett, S. High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8, 455–471 (1998)

    Article  ADS  Google Scholar 

  32. Briffa, K. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat. Sci. Rev. 19, 87–105 (2000)

    Article  ADS  Google Scholar 

  33. Mann, M. E. & Jones, P. D. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 30 10.1029/2003gl017814 (2003)

  34. Moberg, A., Sonechkin, D., Holmgren, K., Datsenko, N. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433, 613–617 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. D'Arrigo, R., Wilson, R. & Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. 111 10.1029/2005jd006352 (2006)

  36. Hegerl, G. C. et al. Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Clim. 20, 650–666 (2007)

    Article  ADS  Google Scholar 

  37. Frank, D., Esper, J. & Cook, E. R. Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys. Res. Lett. 34 L16709 10.1029/2007gl030571 (2007)

    Article  ADS  Google Scholar 

  38. Juckes, M. N. et al. Millennial temperature reconstruction intercomparison and evaluation. Clim. Past. 3, 591–609 (2007)

    Article  Google Scholar 

  39. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008)

    Article  ADS  PubMed  Google Scholar 

  40. Esper, J., Cook, E. & Schweingruber, F. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–2253 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Mann, M. E., Bradley, R. S. & Hughes, M. K. Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–762 (1999)

    Article  ADS  Google Scholar 

  42. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J. Geophys. Res. 111 10.1029/2005jd006548 (2006)

  43. Cook, E. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981)

    Google Scholar 

  44. Thompson, D., Kennedy, J., Wallace, J. & Jones, P. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453, 646–649 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996)

    Article  ADS  CAS  Google Scholar 

  46. MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33 10.1029/2006gl026152 (2006)

Download references


We thank P. Friedlingstein, R. Knutti and T. Stocker for comments, the C4MIP consortium for use of their model output, and the Swiss National Science Foundation (NCCR-Climate) and the European Union projects Carbo-Extreme (226701) and Millennium (017008) for funding.

Author Contributions D.C.F., J.E., C.C.R. and F.J. designed the study, with input from U.B. and V.T. D.C.F. and C.C.R. performed the analysis with input from F.J. and J.E. B.S. provided and interpreted results for land-use sensitivity experiments. All authors contributed to discussion, interpretation and writing the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David C. Frank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S11 with Legends, Supplementary Tables S1-S3 and Supplementary References. (PDF 3537 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, D., Esper, J., Raible, C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology