Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rfx6 directs islet formation and insulin production in mice and humans

Abstract

Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Rfx6 in mice and human tissues.
Figure 2: Expression of Rfx6 in mice.
Figure 3: Targeting of the Rfx6 gene in mice.
Figure 4: Expression patterns of islet markers in wild-type and Rfx6 eGFPcre/eGFPcre mice at E17.5.
Figure 5: Function of the human Rfx6 protein.

Similar content being viewed by others

References

  1. Murtaugh, L. C. Pancreas and beta-cell development: from the actual to the possible. Development 134, 427–438 (2007)

    Article  CAS  Google Scholar 

  2. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Schwitzgebel, V. M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542 (2000)

    CAS  PubMed  Google Scholar 

  5. McCarthy, M. I. & Hattersley, A. T. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 57, 2889–2898 (2008)

    Article  CAS  Google Scholar 

  6. Miyatsuka, T., Li, Z. & German, M. S. Chronology of islet differentiation revealed by temporal cell labeling. Diabetes 58, 1863–1868 (2009)

    Article  CAS  Google Scholar 

  7. Gasa, R. et al. Induction of pancreatic islet cell differentiation by the neurogenin-neuroD cascade. Differentiation 76, 381–391 (2008)

    Article  CAS  Google Scholar 

  8. Aftab, S., Semenec, L., Chu, J. S. & Chen, N. Identification and characterization of novel human tissue-specific RFX transcription factors. BMC Evol. Biol. 8, 226 (2008)

    Article  Google Scholar 

  9. Emery, P., Durand, B., Mach, B. & Reith, W. RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res. 24, 803–807 (1996)

    Article  CAS  Google Scholar 

  10. Lee, C. S., Perreault, N., Brestelli, J. E. & Kaestner, K. H. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev. 16, 1488–1497 (2002)

    Article  CAS  Google Scholar 

  11. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  12. Ait-Lounis, A. et al. Novel function of the ciliogenic transcription factor RFX3 in development of the endocrine pancreas. Diabetes 56, 950–959 (2007)

    Article  CAS  Google Scholar 

  13. Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Emery, P. et al. A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity. Mol. Cell. Biol. 16, 4486–4494 (1996)

    Article  CAS  Google Scholar 

  15. Cano, D. A., Sekine, S. & Hebrok, M. Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131, 1856–1869 (2006)

    Article  CAS  Google Scholar 

  16. Cano, D. A., Murcia, N. S., Pazour, G. J. & Hebrok, M. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131, 3457–3467 (2004)

    Article  CAS  Google Scholar 

  17. Mitchell, J. et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia 47, 2160–2167 (2004)

    Article  CAS  Google Scholar 

  18. Chappell, L. et al. A further example of a distinctive autosomal recessive syndrome comprising neonatal diabetes mellitus, intestinal atresias and gall bladder agenesis. Am. J. Med. Genet. A. 146A, 1713–1717 (2008)

    Article  Google Scholar 

  19. Liu, X., Yu, X., Zack, D. J., Zhu, H. & Qian, J. TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9, 271 (2008)

    Article  Google Scholar 

  20. Stefan, Y., Grasso, S., Perrelet, A. & Orci, L. A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes 32, 293–301 (1983)

    Article  CAS  Google Scholar 

  21. Lyttle, B. M. et al. Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 51, 1169–1180 (2008)

    Article  CAS  Google Scholar 

  22. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. 39, 1522–1527 (2007)

    Article  CAS  Google Scholar 

  23. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008)

    Article  CAS  Google Scholar 

  24. Albert, T. J. et al. Direct selection of human genomic loci by microarray hybridization. Nature Methods 4, 903–905 (2007)

    Article  CAS  Google Scholar 

  25. Gajiwala, K. S. et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916–921 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Chang, Y. F., Imam, J. S. & Wilkinson, M. F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007)

    Article  CAS  Google Scholar 

  27. Gentile, M. & Fiorente, P. Esophageal, duodenal, rectoanal and biliary atresia, intestinal malrotation, malformed/hypoplastic pancreas, and hypospadias: further evidence of a new distinct syndrome. Am. J. Med. Genet. 87, 82–83 (1999)

    Article  CAS  Google Scholar 

  28. Hakonarson, H. et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 57, 1143–1146 (2008)

    Article  CAS  Google Scholar 

  29. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007)

    Article  ADS  CAS  Google Scholar 

  30. The Wellcome Trust Case Control Consortium.Genome-wide. association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)

  31. Wang, J. et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355, 270–280 (2006)

    Article  CAS  Google Scholar 

  32. Jensen, J. et al. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49, 163–176 (2000)

    Article  CAS  Google Scholar 

  33. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002)

    CAS  PubMed  Google Scholar 

  34. Cortina, G. et al. Enteroendocrine cell dysgenesis and malabsorption, a histopathologic and immunohistochemical characterization. Hum. Pathol. 38, 570–580 (2007)

    Article  CAS  Google Scholar 

  35. Jensen, J. N. et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 356, 1781–1782; author reply 1782 (2007)

    Article  CAS  Google Scholar 

  36. Wang, S. et al. Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev. Biol. 317, 531–540 (2008)

    Article  CAS  Google Scholar 

  37. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001)

    Article  CAS  Google Scholar 

  38. Nekrep, N., Wang, J., Miyatsuka, T. & German, M. S. Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135, 2151–2160 (2008)

    Article  CAS  Google Scholar 

  39. Lynn, F. C. et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56, 2938–2945 (2007)

    Article  CAS  Google Scholar 

  40. Lynn, F. C. et al. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc. Natl Acad. Sci. USA 104, 10500–10505 (2007)

    Article  ADS  CAS  Google Scholar 

  41. Steemers, F. J. & Gunderson, K. L. Whole genome genotyping technologies on the BeadArray platform. Biotechnol. J. 2, 41–49 (2007)

    Article  CAS  Google Scholar 

  42. David, E., Garcia, A. D. & Hearing, P. Interaction of EF-C/RFX-1 with the inverted repeat of viral enhancer regions is required for transactivation. J. Biol. Chem. 270, 8353–8360 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients and their families for the participation in this study and P. Riley for allowing us access to her clinical data. We thank G. Grodsky, G. Bell, W. Rutter, R. Gasa and members of the German laboratory for discussions, F. Schaufle and the DERC Microscopy Core Laboratory, C. Mrejen and the UCSF DERC Genomics Core, N. Killeen and the UCSF DERC Transgenic Core Laboratory for help with the generation of the Rfx6-targeted mice, R. Koshy for technical assistance, Y. Zhang and S. Zhao for assistance with mouse husbandry and genotyping, the Massively Parallel Sequencing team at the McGill University and Genome Quebec Innovation Center for DNA sequencing and J. Wasserscheid for bioinformatics analyses. This work was supported by grants from the Larry L. Hillblom Foundation (S.B.S. and M.S.G.), the Juvenile Diabetes Research Foundation (S.B.S., F.C.L., T.M., R.W., C.P. and M.S.G.), the American Diabetes Association (M.S.G.), the Nora Eccles Treadwell Foundation (M.S.G.), the Canadian Institutes of Health Research (H.-Q.Q.), and the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (M.S.G.).

Author Contributions S.B.S., H.-Q.Q., N.T., N.Y.K., D.W.S., F.C.L., K.D., R.W., C.P. and M.S.G. wrote the paper. K.D., C.P. and M.S.G. oversaw the studies. S.B.S., D.W.S., Y.L., J.Wa., T.M., R.W., M.-E.W. and J.D.J. performed mRNA expression analyses. N.Y.K., D.W.S. and J.Wa. performed immunofluorescence studies. S.B.S., F.C.L. and R.S. performed Rfx6 gene targeting studies. S.B.S. performed DNA binding and transcription studies. H.-Q.Q. performed homozygosity mapping. N.T., R.G., K.D. and J.Wa. performed Nimblegen array and sequencing studies. A.-M.P., J.M, J.D, S.V.E., M.A., N.Ka., J.We., M.-E.R., M.G., I.H. and A.T.H. recruited the human subjects and provided phenotypic information. H.-Q.Q. and N.T. contributed equally to this work; N.Y.K. and D.W.S. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Constantin Polychronakos or Michael S. German.

Ethics declarations

Competing interests

Competing interests: M.S.G. is an inventor on patents held by the University of California covering Neurog3 and its use.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S17 with Legends, Supplementary Notes for the Human Mapping and Supplementary Tables S1-S5 and S7-S8. (PDF 7605 kb)

Supplementary Table S6

This table shows the expression of genes in the region of homozygosity by descent. (XLS 396 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., Qu, HQ., Taleb, N. et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 463, 775–780 (2010). https://doi.org/10.1038/nature08748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08748

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing