Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanism of substrate recognition and transport by an amino acid antiporter


In extremely acidic environments, enteric bacteria such as Escherichia coli rely on the amino acid antiporter AdiC to expel protons by exchanging intracellular agmatine (Agm2+) for extracellular arginine (Arg+)1,2,3. AdiC is a representative member of the amino acid-polyamine-organocation (APC) superfamily of membrane transporters4,5. The structure of substrate-free AdiC revealed a homodimeric assembly, with each protomer containing 12 transmembrane segments and existing in an outward-open conformation6,7. The overall folding of AdiC is similar to that of the Na+-coupled symporters8,9,10,11. Despite these advances, it remains unclear how the substrate (arginine or agmatine) is recognized and transported by AdiC. Here we report the crystal structure of an E. coli AdiC variant bound to Arg at 3.0 Å resolution. The positively charged Arg is enclosed in an acidic binding chamber, with the head groups of Arg hydrogen-bonded to main chain atoms of AdiC and the aliphatic portion of Arg stacked by hydrophobic side chains of highly conserved residues. Arg binding induces pronounced structural rearrangement in transmembrane helix 6 (TM6) and, to a lesser extent, TM2 and TM10, resulting in an occluded conformation. Structural analysis identified three potential gates, involving four aromatic residues and Glu 208, which may work in concert to differentially regulate the upload and release of Arg and Agm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of AdiC bound to Arg.
Figure 2: Recognition of Arg by conserved amino acids.
Figure 3: Conformational changes of AdiC upon binding of Arg.
Figure 4: A proposed model for Arg-Agm exchange.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates of AdiC bound to Arg have been deposited in the Protein Data Bank under the accession code 3L1L.


  1. Foster, J. W. Escherichia coli acid resistance: tales of an amateur acidophile. Nature Rev. Microbiol. 2, 898–907 (2004)

    Article  CAS  Google Scholar 

  2. Iyer, R., Williams, C. & Miller, C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli . J. Bacteriol. 185, 6556–6561 (2003)

    Article  CAS  Google Scholar 

  3. Gong, S., Richard, H. & Foster, J. W. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli . J. Bacteriol. 185, 4402–4409 (2003)

    Article  CAS  Google Scholar 

  4. Jack, D. L., Paulsen, I. T. & Saier, M. H. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146, 1797–1814 (2000)

    Article  CAS  Google Scholar 

  5. Casagrande, F. et al. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem. 283, 33240–33248 (2008)

    Article  CAS  Google Scholar 

  6. Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science 324, 1565–1568 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460, 1040–1043 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–52 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Hersh, B. M., Farooq, F. T., Barstad, D. N., Blankenhorn, D. L. & Slonczewski, J. L. A glutamate-dependent acid resistance gene in Escherichia coli . J. Bacteriol. 178, 3978–3981 (1996)

    Article  CAS  Google Scholar 

  13. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. & Foster, J. W. Control of acid resistance in Escherichia coli . J. Bacteriol. 181, 3525–3535 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Soksawatmaekhin, W., Kuraishi, A., Sakata, K., Kashiwagi, K. & Igarashi, K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli . Mol. Microbiol. 51, 1401–1412 (2004)

    Article  CAS  Google Scholar 

  15. Soksawatmaekhin, W., Uemura, T., Fukiwake, N., Kashiwagi, K. & Igarashi, K. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J. Biol. Chem. 281, 29213–29220 (2006)

    Article  CAS  Google Scholar 

  16. Kashiwagi, K. et al. Identification of the putrescine recognition site on polyamine transport protein PotE. J. Biol. Chem. 275, 36007–36012 (2000)

    Article  CAS  Google Scholar 

  17. Kashiwagi, K., Miyamoto, S., Suzuki, F., Kobayashi, H. & Igarashi, K. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli . Proc. Natl Acad. Sci. USA 89, 4529–4533 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Kashiwagi, K., Shibuya, S., Tomitori, H., Kuraishi, A. & Igarashi, K. Excretion and uptake of putrescine by the PotE protein in Escherichia coli . J. Biol. Chem. 272, 6318–6323 (1997)

    Article  CAS  Google Scholar 

  19. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Fang, Y., Kolmakova-Partensky, L. & Miller, C. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem. 282, 176–182 (2007)

    Article  CAS  Google Scholar 

  21. Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317, 1390–1393 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Singh, S. K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Forrest, L. R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl Acad. Sci. USA 105, 10338–10343 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  27. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  29. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  30. DeLano, W. L. The PyMOL Molecular Graphics System. 〈〉 (2002)

  31. Cowtan, K. dm: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

Download references


We thank C. Miller and Y. Xiong for discussion and exchange of information, N. Shimizu, T. Kumasaka and S. Baba at the Spring-8 beamline BL41XU for on-site assistance, and N. Yan for discussion and comments on the manuscript. This work was supported by the Ministry of Science and Technology (grant no. 2009CB918801), Tsinghua University 985 Phase II funds, National Natural Science Foundation, and Beijing Municipal Commissions of Education and Science and Technology.

Author Contributions Experiments were performed by X.G., L.Z., X.J., F.L., C.Y., X.Z. and J.W. Data were analysed by X.G., L.Z., X.J., J.W. and Y.S. The manuscript was prepared by X.G., L.Z. and Y.S.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yigong Shi.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3, Supplementary Figures 1-12 with Legends and Supplementary References. (PDF 2651 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gao, X., Zhou, L., Jiao, X. et al. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463, 828–832 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing