Abstract
Heterozygous mutations in the gene encoding the CHD (chromodomain helicase DNA-binding domain) member CHD7, an ATP-dependent chromatin remodeller homologous to the Drosophila trithorax-group protein Kismet1,2, result in a complex constellation of congenital anomalies called CHARGE syndrome, which is a sporadic, autosomal dominant disorder characterized by malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart3,4. Although it was postulated 25 years ago that CHARGE syndrome results from the abnormal development of the neural crest, this hypothesis remained untested5. Here we show that, in both humans and Xenopus, CHD7 is essential for the formation of multipotent migratory neural crest (NC), a transient cell population that is ectodermal in origin but undergoes a major transcriptional reprogramming event to acquire a remarkably broad differentiation potential and ability to migrate throughout the body, giving rise to craniofacial bones and cartilages, the peripheral nervous system, pigmentation and cardiac structures6,7. We demonstrate that CHD7 is essential for activation of the NC transcriptional circuitry, including Sox9, Twist and Slug. In Xenopus embryos, knockdown of Chd7 or overexpression of its catalytically inactive form recapitulates all major features of CHARGE syndrome. In human NC cells CHD7 associates with PBAF (polybromo- and BRG1-associated factor-containing complex)8 and both remodellers occupy a NC-specific distal SOX9 enhancer9 and a conserved genomic element located upstream of the TWIST1 gene. Consistently, during embryogenesis CHD7 and PBAF cooperate to promote NC gene expression and cell migration. Our work identifies an evolutionarily conserved role for CHD7 in orchestrating NC gene expression programs, provides insights into the synergistic control of distal elements by chromatin remodellers, illuminates the patho-embryology of CHARGE syndrome, and suggests a broader function for CHD7 in the regulation of cell motility.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Mesenchymal properties of iPSC-derived neural progenitors that generate undesired grafts after transplantation
Communications Biology Open Access 07 June 2023
-
Precise modulation of transcription factor levels identifies features underlying dosage sensitivity
Nature Genetics Open Access 06 April 2023
-
The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development
International Journal of Oral Science Open Access 06 April 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Srinivasan, S., Dorighi, K. M. & Tamkun, J. W. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet. 4, e1000217 (2008)
Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila . Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988)
Vissers, L. E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 36, 955–957 (2004)
Sanlaville, D. & Verloes, A. CHARGE syndrome: an update. Eur. J. Hum. Genet. 15, 389–399 (2007)
Siebert, J. R., Graham, J. M. & MacDonald, C. Pathologic features of the CHARGE association: support for involvement of the neural crest. Teratology 31, 331–336 (1985)
Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nature Rev. Mol. Cell Biol. 9, 557–568 (2008)
Dupin, E., Creuzet, S. & Le Douarin, N. M. The contribution of the neural crest to the vertebrate body. Adv. Exp. Med. Biol. 589, 96–119 (2006)
Lemon, B., Inouye, C., King, D. S. & Tjian, R. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414, 924–928 (2001)
Bagheri-Fam, S. et al. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev. Biol. 291, 382–397 (2006)
Bajpai, R. et al. Molecular stages of rapid and uniform neuralization of human embryonic stem cells. Cell Death Differ. 16, 807–825 (2009)
Eccles, M. R. & Schimmenti, L. A. Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin. Genet. 56, 1–9 (1999)
Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009)
Mohrmann, L. & Verrijzer, C. P. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681, 59–73 (2005)
Kaeser, M. D., Aslanian, A., Dong, M. Q., Yates, J. R. & Emerson, B. M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008)
Kwon, C. S. & Wagner, D. Unwinding chromatin for development and growth: a few genes at a time. Trends Genet. 23, 403–412 (2007)
Schnetz, M. P. et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19, 590–601 (2009)
Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl Acad. Sci. USA 106, 5187–5191 (2009)
Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009)
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007)
Loring, J. F., Wesselschmidt, R. L. & Schwartz, P. H. Human Stem Cell Manual: A Laboratory Guide (Elsevier/Academic, 2007)
Minarcik, J. C. & Golden, J. A. AP-2 and HNK-1 define distinct populations of cranial neural crest cells. Orthod. Craniofac. Res. 6, 210–219 (2003)
Del Barrio, M. G. & Nieto, M. A. Relative expression of Slug, RhoB, and HNK-1 in the cranial neural crest of the early chicken embryo. Dev. Dyn. 229, 136–139 (2004)
Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnol. 25, 1468–1475 (2007)
Stegmeier, F., Hu, G., Rickles, R., Hannon, G. & Elledge, S. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102, 13212–13217 (2005)
Shimada, T. et al. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector. J. Clin. Invest. 88, 1043–1047 (1991)
Zufferey, R., Nagy, D., Mandel, R., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo . Nature Biotechnol. 15, 871–875 (1997)
Bajpai, R., Lesperance, J., Kim, M. & Terskikh, A. V. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol. Reprod. Dev. 75, 818–827 (2008)
Dignam, J., Lebovitz, R. & Roeder, R. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983)
Shimizu, K. & Gurdon, J. B. A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation. Proc. Natl Acad. Sci. USA 96, 6791–6796 (1999)
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005)
Fu, Y., Sinha, M., Peterson, C. L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008)
Seo, S., Richardson, G. A. & Kroll, K. L. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132, 105–115 (2005)
Higuchi, R., Krummel, B. & Saiki, R. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988)
Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (Garland, 1994)
Sive, H. L., Grainger, R. M. & Harland, R. M. Early Development of Xenopus laevis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2000)
Acknowledgements
We thank laboratory members for input during the course of this work; S. Brugmann and A. C. Foley for sharing expertise in Xenopus and chick embryology, B. Bedogni, L. Ho and I. Shestopalov for reagents; A. Sanchez-Alvarado for the cartilage staining protocol; G. Crump and S. Cox for sharing unpublished information; and S. Brugmann, E. Duncan, Z. Ma, J. Peng, A. M. Ring and R. A. Roth for comments on the manuscript. This work was supported by CIRM SEED grant RS1-00323, a W. M. Keck Foundation Distinguished Young Scholar Award, a Searle Scholar Award to J.W., an EMBO long-term fellowship to A.R-I., National Institutes of Health (NIH) grant R01DK082664 to Y.Z., March of Dimes grant 6-FY06-335 to J.H., NIH grant R01HL085345 to C-P.C., and an Oak Foundation Fellowship to Y.X.
Author Contributions R.B. developed the in vitro model of human NC formation and designed, performed and interpreted most experiments. D.A.C. did a preliminary characterization of NC migration defects in Xenopus, performed the in situ hybridization analyses of wild-type and CHD7 morphant embryos, and analysed the craniofacial defects in hCHD7 ATPaseK998R tadpoles. A.R-I. performed the genomic analyses of CHD7-Brg1 co-occupancy and contributed ideas. J.Z. and Y.Z. performed the mass spectrometric analysis of CHD7 immunoprecipitates. Y.X. and C-P.C. characterized the heart defects in hCHD7 ATPaseK998R tadpoles. J.H. provided expertise and guidance on in ovo transplantation experiments. T.S. advised on the design and interpretation of Xenopus experiments and contributed reagents. J.W. conceived the project, contributed ideas, interpreted results and wrote the manuscript. All authors edited the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figures 1-19 with Legends and Supplementary Tables 1-4. (PDF 8933 kb)
Rights and permissions
About this article
Cite this article
Bajpai, R., Chen, D., Rada-Iglesias, A. et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463, 958–962 (2010). https://doi.org/10.1038/nature08733
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature08733
This article is cited by
-
Precise modulation of transcription factor levels identifies features underlying dosage sensitivity
Nature Genetics (2023)
-
Mesenchymal properties of iPSC-derived neural progenitors that generate undesired grafts after transplantation
Communications Biology (2023)
-
The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development
International Journal of Oral Science (2023)
-
A novel CHD7 variant in a chinese family with CHARGE syndrome
Genes & Genomics (2023)
-
The spectrum of cochlear malformations in CHARGE syndrome and insights into the role of the CHD7 gene during embryogenesis of the inner ear
Neuroradiology (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.