Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings

Abstract

The cleavage of C–H and C–C bonds by transition metal centres is of fundamental interest and plays an important role in the synthesis of complex organic molecules from petroleum feedstocks1,2,3,4,5,6. But while there are many examples for the oxidative addition of C–H bonds to a metal centre, transformations that feature oxidative addition of C–C bonds are rare. The paucity of transformations that involve the cleavage of C–C rather than C–H bonds is usually attributed to kinetic factors arising from the greater steric hindrance and the directional nature of the sp n hybrids that form the C–C bond, and to thermodynamic factors arising from the fact that M–C bonds are weaker than M–H bonds2,3,4,5. Not surprisingly, therefore, most examples of C–C bond cleavage either avoid the kinetic limitations by using metal compounds in which the C–C bond is held in close proximity to the metal centre, or avoid the thermodynamic limitations by using organic substrates in which the cleavage is accompanied by either a relief of strain energy or the formation of an aromatic system2,3,4,5. Here, we show that a tungsten centre can be used to cleave a strong C–C bond that is a component of an unstrained 6-membered aromatic ring. The cleavage is enabled by the formation of an unusual chelating di(isocyanide) ligand, which suggests that other metal centres with suitable ancillary ligands could also accomplish the cleavage of strong C–C bonds of aromatic substrates and thereby provide new ways of functionalizing such molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1

    Jones, W. D. in Comprehensive Organometallic Chemistry III, Vol. 1, Ch. 1.25 (eds Crabtree, R. H. & Mingos, D. M. P.) (Elsevier, 2006)

    Google Scholar 

  2. 2

    Jones, W. D. The fall of the C–C bond. Nature 364, 676–677 (1993)

    ADS  Article  Google Scholar 

  3. 3

    Jun, C. H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 33, 610–618 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. 4

    van der Boom, M. E. & Milstein, D. Cyclometalated phosphine-based pincer complexes: Mechanistic insight in catalysis, coordination, and bond activation. Chem. Rev. 103, 1759–1792 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Crabtree, R. H. The organometallic chemistry of alkanes. Chem. Rev. 85, 245–269 (1985)

    Article  CAS  Google Scholar 

  6. 6

    Rybtchinski, B. & Milstein, D. Metal insertion into C–C bonds in solution. Angew. Chem. Int. Edn Engl. 38, 870–883 (1999)

    Article  Google Scholar 

  7. 7

    Zhu, G., Tanski, J. M., Churchill, D. G., Janak, K. E., & Parkin, G. The reactivity of Mo(PMe3)6 towards heterocyclic nitrogen compounds: transformations relevant to hydrodenitrogenation. J. Am. Chem. Soc. 124, 13658–13659 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Zhu, G., Pang, K. & Parkin, G. New modes for coordination of aromatic heterocyclic nitrogen compounds to molybdenum: catalytic hydrogenation of quinoline, isoquinoline, and quinoxaline by Mo(PMe3)4H4 . J. Am. Chem. Soc. 130, 1564–1565 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Buccella, D. & Parkin, G. p-tert-butylcalix[4] arene complexes of molybdenum and tungsten: reactivity of the calixarene methylene C-H bond and the facile migration of the metal around the phenolic rim of the calixarene. J. Am. Chem. Soc. 128, 16358–16364 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Cyranski, M. K. Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773–3811 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Kleckley, T. S., Bennett, J. L., Wolczanski, P. T. & Lobkovsky, E. B. Pyridine C = N bond cleavage mediated by (silox)3Nb(silox = tBu3SiO). J. Am. Chem. Soc. 119, 247–248 (1997)

    Article  CAS  Google Scholar 

  12. 12

    Bonanno, J. B., Veige, A. S., Wolczanski, P. T. & Lobkovsky, E. B. Amide derivatives of tantalum and a niobium-promoted ring opening of 3,5-lutidine. Inorg. Chim. Acta 345, 173–184 (2003)

    Article  CAS  Google Scholar 

  13. 13

    Gray, S. D., Weller, K. J., Bruck, M. A., Briggs, P. M. & Wigley, D. E. Carbon-nitrogen bond-cleavage in an η2(N, C)-pyridine complex-induced by intramolecular metal-to-ligand alkyl migration - models for hydrodenitrogenation catalysis. J. Am. Chem. Soc. 117, 10678–10693 (1995)

    Article  CAS  Google Scholar 

  14. 14

    Weller, K. J., Filippov, I., Briggs, P. M. & Wigley, D. E. Pyridine degradation intermediates as models for hydrodenitrogenation catalysis: preparation and properties of a metallapyridine complex. Organometallics 17, 322–329 (1998)

    Article  CAS  Google Scholar 

  15. 15

    Bailey, B. C., Fan, H., Huffman, J. C., Baik, M. H. & Mindiola, D. J. Room temperature ring-opening metathesis of pyridines by a transient Ti≡C linkage. J. Am. Chem. Soc. 128, 6798–6799 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Ito, Y., Ohnishi, A., Ohsaki, H. & Murakami, M. A preparative method for ortho-diisocyanoarenes. Synthesis 714–715 (1988)

  17. 17

    Wagner, N. L., Laib, F. E. & Bennett, D. W. Conformational isomerism in (p-RC6H4NC)2W(dppe)2: substantial structural changes resulting from subtle differences in the pi-acidity of p-RC6H4NC. J. Am. Chem. Soc. 122, 10856–10867 (2000)

    Article  CAS  Google Scholar 

  18. 18

    Kuznetsov, M. L. Theoretical studies of transition metal complexes with nitriles and isocyanides. Russ. Chem. Rev. 71, 265–282 (2002)

    ADS  Article  CAS  Google Scholar 

  19. 19

    Strauch, H. C. et al. Reactions of (butadiene)tantalocene cation with alkyl isocyanides. Organometallics 18, 3802–3812 (1999)

    Article  CAS  Google Scholar 

  20. 20

    Brennessel, W. W. & Ellis, J. E. [Fe(CNXyl)4]2-: an isolable and structurally characterized homoleptic isocyanidemetalate dianion. Angew. Chem. Int. Edn Engl. 46, 598–600 (2007)

    Article  CAS  Google Scholar 

  21. 21

    Hahn, F. E. The coordination chemistry of multidentate isocyanide ligands. Angew. Chem. Int. Edn Engl. 32, 650–665 (1993)

    Article  Google Scholar 

  22. 22

    Espinet, P., Soulantica, K., Charmant, J. P. H. & Orpen, A. G. 1,2-Phenylene diisocyanide for metallotriangles. Chem. Commun. 915–916 (2000)

  23. 23

    Hahn, F. E., Tamm, M., Imhof, L. & Lugger, T. Preparation and crystal structures of a bidentate isocyanide and its tetracarbonylchromium complex. J. Organomet. Chem. 526, 149–155 (1996)

    Article  CAS  Google Scholar 

  24. 24

    Lappert, M. F. Contributions to the chemistry of carbene metal chemistry. J. Organomet. Chem. 690, 5467–5473 (2005)

    Article  CAS  Google Scholar 

  25. 25

    Wilker, C. N., Hoffmann, R. & Eisenstein, O. Coupling methylenes, methynes and other π-systems on one or two metal centers. Nouv. J. Chim. 7, 535–544 (1983)

    CAS  Google Scholar 

  26. 26

    Hartwig, J. F., Bergman, R. G. & Andersen, R. A. Structure, synthesis, and chemistry of (PMe3)4Ru(η2-benzyne). Reactions with arenes, alkenes, and heteroatom-containing organic-compounds. Synthesis and structure of a monomeric hydroxide complex. J. Am. Chem. Soc. 113, 3404–3418 (1991)

    Article  CAS  Google Scholar 

  27. 27

    Pombeiro, A. J. L., da Silva, M. & Michelin, R. A. Aminocarbyne complexes derived from isocyanides activated towards electrophilic addition. Coord. Chem. Rev. 218, 43–74 (2001)

    Article  CAS  Google Scholar 

  28. 28

    Carnahan, E. M., Protasiewicz, J. D. & Lippard, S. J. 15 years of reductive coupling: what have we learned? Acc. Chem. Res. 26, 90–97 (1993)

    Article  CAS  Google Scholar 

  29. 29

    Ito, Y. et al. Aromatizing oligomerization of 1,2-di-isocyanoarene to quinoxaline oligomers. J. Chem. Soc. Chem. Commun. 403–405 (1990)

  30. 30

    Clauss, A. D., Shapley, J. R., Wilker, C. N. & Hoffmann, R. Alkyne scission on a trimetallic framework: experimental evidence and theoretical analysis. Organometallics 3, 619 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US Department of Energy, Office of Basic Energy Sciences (DE-FG02-93ER14339) for supporting this research. We thank The National Science Foundation (CHE-0619638) for the acquisition of an X-ray diffractometer. We thank W. Sattler for discussions.

Author Contributions G.P. supervised the project. A.S. synthesized and characterized the compounds. G.P. and A.S. analysed the data and wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerard Parkin.

Additional information

The authors declare no competing financial interests. X-ray crystallographic coordinates have been deposited at the Cambridge Crystallographic Database (CCDC #734113–734121).

Supplementary information

Supplementary Information

This file contains Supplementary Experiments, Supplementary Figures S1- S9 with Legends, Supplementary Table 1 and Supplementary References. (PDF 2891 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sattler, A., Parkin, G. Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings. Nature 463, 523–526 (2010). https://doi.org/10.1038/nature08730

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing