Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An aspartyl protease directs malaria effector proteins to the host cell

Abstract

Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. To survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here we show that the protein responsible for cleavage of this motif is plasmepsin V (PMV), an aspartic acid protease located in the endoplasmic reticulum. PMV cleavage reveals the export signal (xE/Q/D) at the amino terminus of cargo proteins. Expression of an identical mature protein with xQ at the N terminus generated by signal peptidase was not exported, demonstrating that PMV activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PEXEL processing is sensitive to HIV protease inhibitors.
Figure 2: PMV cleaves PEXEL.
Figure 3: Activity of PMV and cleavage of PEXEL.
Figure 4: Cleavage by PMV is essential for export.

Similar content being viewed by others

References

  1. Snow, R. W. et al. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005)

    Article  CAS  ADS  Google Scholar 

  2. Miller, L. H., Good, M. F. & Milon, G. Malaria pathogenesis. Science 264, 1878–1883 (1994)

    Article  CAS  ADS  Google Scholar 

  3. Raventos-Suarez, C., Kaul, D. K., Macaluso, F. & Nagel, R. L. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. USA 82, 3829–3833 (1985)

    Article  CAS  ADS  Google Scholar 

  4. Barnwell, J. W. et al. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J. Clin. Invest. 84, 765–772 (1989)

    Article  CAS  Google Scholar 

  5. Marti, M. et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306, 1930–1933 (2004)

    Article  CAS  ADS  Google Scholar 

  6. Hiller, N. L. et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306, 1934–1937 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Pei, X. et al. Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J. Biol. Chem. 280, 31166–31171 (2005)

    Article  CAS  Google Scholar 

  8. Baruch, D. I. et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87 (1995)

    Article  CAS  Google Scholar 

  9. Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995)

    Article  CAS  Google Scholar 

  10. Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995)

    Article  CAS  Google Scholar 

  11. Maier, A. G. et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48–61 (2008)

    Article  CAS  Google Scholar 

  12. Maier, A. G., Cooke, B. M., Cowman, A. F. & Tilley, L. Malaria parasite proteins that remodel the host erythrocyte. Nature Rev. Microbiol. 7, 341–354 (2009)

    Article  CAS  Google Scholar 

  13. de Koning-Ward, T. F. et al. A newly discovered protein export machine in malaria parasites. Nature 459, 945–949 (2009)

    Article  CAS  ADS  Google Scholar 

  14. Sargeant, T. J. et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12 (2006)

    Article  Google Scholar 

  15. van Ooij, C. et al. The malaria secretome: from algorithms to essential function in blood stage infection. PLoS Pathog. 4, e1000084 (2008)

    Article  Google Scholar 

  16. Chang, H. H. et al. N-terminal processing of proteins exported by malaria parasites. Mol. Biochem. Parasitol. 160, 107–115 (2008)

    Article  CAS  Google Scholar 

  17. Boddey, J. A., Moritz, R. L., Simpson, R. J. & Cowman, A. F. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10, 285–299 (2009)

    Article  CAS  Google Scholar 

  18. Przyborski, J. M. et al. Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J. 24, 2306–2317 (2005)

    Article  CAS  Google Scholar 

  19. Weber, I. T. et al. Molecular modeling of the HIV-1 protease and its substrate binding site. Science 243, 928–931 (1989)

    Article  CAS  ADS  Google Scholar 

  20. Miller, M. et al. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science 246, 1149–1152 (1989)

    Article  CAS  ADS  Google Scholar 

  21. Waller, R. F., Reed, M. B., Cowman, A. F. & McFadden, G. I. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19, 1794–1802 (2000)

    Article  CAS  Google Scholar 

  22. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum . PLoS Biol. 1, e5 (2003)

    Article  Google Scholar 

  23. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003)

    Article  CAS  ADS  Google Scholar 

  24. Klemba, M. & Goldberg, D. E. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum . Mol. Biochem. Parasitol. 143, 183–191 (2005)

    Article  CAS  Google Scholar 

  25. La Greca, N. et al. Identification of an endoplasmic reticulum-resident calcium-binding protein with multiple EF-hand motifs in asexual stages of Plasmodium falciparum . Mol. Biochem. Parasitol. 89, 283–293 (1997)

    Article  CAS  Google Scholar 

  26. Knuepfer, E., Rug, M. & Cowman, A. F. Function of the Plasmodium export element can be blocked by green fluorescent protein. Mol. Biochem. Parasitol. 142, 258–262 (2005)

    Article  CAS  Google Scholar 

  27. Carlton, J. M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax . Nature 455, 757–763 (2008)

    Article  CAS  ADS  Google Scholar 

  28. Pain, A. et al. The genome of the simian and human malaria parasite Plasmodium knowlesi . Nature 455, 799–803 (2008)

    Article  CAS  ADS  Google Scholar 

  29. Meissner, M. et al. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc. Natl Acad. Sci. USA 102, 2980–2985 (2005)

    Article  CAS  ADS  Google Scholar 

  30. Baum, J. et al. A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. Cell Host Microbe 3, 188–198 (2008)

    Article  CAS  Google Scholar 

  31. Gilson, P. R. et al. MSP119 miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Mol. Microbiol. 68, 124–138 (2008)

    Article  CAS  Google Scholar 

  32. Duraisingh, M. T., Triglia, T. & Cowman, A. F. Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. Int. J. Parasitol. 32, 81–89 (2002)

    Article  CAS  Google Scholar 

  33. Hodder, A. N. et al. Structural insights into the protease-like antigen Plasmodium falciparum SERA5 and its noncanonical active-site serine. J. Mol. Biol. 392, 154–165 (2009)

    Article  CAS  Google Scholar 

  34. Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Australian Red Cross Blood Bank for the provision of human blood and serum, the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH for providing HIV protease inhibitors and MR4 (ATCC) for plasmepsin V antibodies, contributed by D. Goldberg. This work was supported by the National Health and Medical Research Council, and a grant from the National Institutes of Health (RO1 AI44008). J.A.B. is an NHMRC Peter Doherty postdoctoral Fellow and A.F.C. is an International Research Scholar of the Howard Hughes Medical Institute and an Australia Fellow.

Author Contributions J.A.B. performed the biochemical and cell biological experiments. A.N.H. performed HPLC, biochemical analysis and purification of recombinant plasmepsin V. S.G. made 3D7-PMIXHA, purified recombinant GBP130 proteins and analysed their processing. H.P. and E.A.K. performed the proteomics analysis. T.F.d.K.-W. attempted the knockouts of plasmepsin V in P. berghei and analysed the results. A.F.C. designed and interpreted experiments. All authors contributed to the study design and to writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Cowman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains detailed Figure Legends for Supplementary Figures 1-4, Supplementary Figures 1-7 with Legends and Supplementary References. (PDF 4315 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boddey, J., Hodder, A., Günther, S. et al. An aspartyl protease directs malaria effector proteins to the host cell. Nature 463, 627–631 (2010). https://doi.org/10.1038/nature08728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08728

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research