Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor

Abstract

The nature of the pseudogap phase is a central problem in the effort to understand the high-transition-temperature (high-Tc) copper oxide superconductors1. A fundamental question is what symmetries are broken when the pseudogap phase sets in, which occurs when the temperature decreases below a value T*. There is evidence from measurements of both polarized neutron diffraction2,3 and the polar Kerr effect4 that time-reversal symmetry is broken, but at temperatures that differ significantly from one another. Broken rotational symmetry was detected from both resistivity measurements5 and inelastic neutron scattering6,7,8 at low doping, and from scanning tunnelling spectroscopy9,10 at low temperature, but showed no clear relation to T*. Here we report the observation of a large in-plane anisotropy of the Nernst effect in YBa2Cu3O y that sets in precisely at T* throughout the doping phase diagram. We show that the CuO chains of the orthorhombic lattice are not responsible for this anisotropy, which is therefore an intrinsic property of the CuO2 planes. We conclude that the pseudogap phase is an electronic state that strongly breaks four-fold rotational symmetry. This narrows the range of possible states considerably, pointing to stripe or nematic order11,12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nernst coefficient.
Figure 2: Phase diagram.
Figure 3: Comparison of νa and νb .
Figure 4: Anisotropy of the Nernst signal.

References

  1. 1

    Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high T c? Adv. Phys. 54, 715–733 (2005)

    ADS  Article  CAS  Google Scholar 

  2. 2

    Fauqué, B. et al. Magnetic order in the pseudogap phase of high-T c superconductors. Phys. Rev. Lett. 96, 197001 (2006)

    ADS  Article  CAS  PubMed  Google Scholar 

  3. 3

    Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ . Nature 455, 372–375 (2008)

    ADS  Article  CAS  PubMed  Google Scholar 

  4. 4

    Xia, J. et al. Polar Kerr effect of the high-temperature superconductor YBa2Cu3O6+x : evidence of broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008)

    ADS  Article  CAS  PubMed  Google Scholar 

  5. 5

    Ando, Y. et al. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    ADS  Article  CAS  PubMed  Google Scholar 

  6. 6

    Stock, C. et al. Dynamical stripes and resonance in the superconducting and normal phases of YBa2Cu3O6. 5 ortho-II superconductor. Phys. Rev. B 69, 014502 (2004)

    ADS  Article  CAS  Google Scholar 

  7. 7

    Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007)

    ADS  Article  CAS  Google Scholar 

  8. 8

    Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6. 45 . Science 319, 597–600 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007)

    ADS  Article  CAS  PubMed  Google Scholar 

  10. 10

    Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ . Nature 454, 1072–1078 (2008)

    ADS  Article  CAS  PubMed  Google Scholar 

  11. 11

    Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    ADS  Article  CAS  Google Scholar 

  12. 12

    Vojta, M. Lattice-symmetry breaking in cuprate superconductors: stripes, nematics and superconductivity. Adv. Phys. 58, 699–820 (2009)

    ADS  Article  CAS  Google Scholar 

  13. 13

    Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006)

    ADS  Article  CAS  Google Scholar 

  14. 14

    Wang, Y., Li, P. & Ong, N. P. Nernst effect in high-T c superconductors. Phys. Rev. B 73, 024510 (2006)

    ADS  Article  CAS  Google Scholar 

  15. 15

    Rullier-Albenque, F. et al. Nernst effect and disorder in the normal state of high-T c cuprates. Phys. Rev. Lett. 96, 067002 (2006)

    ADS  Article  CAS  PubMed  Google Scholar 

  16. 16

    Ong, N. P. et al. Vorticity and the Nernst effect in cuprate superconductors. Ann. Phys. (Leipz.) 13, 9–14 (2004)

    ADS  Article  CAS  Google Scholar 

  17. 17

    Behnia, K. The Nernst effect and the boundaries of the Fermi liquid picture. J. Phys. Condens. Matter 21, 113101 (2009)

    ADS  Article  CAS  PubMed  Google Scholar 

  18. 18

    Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    ADS  Article  CAS  Google Scholar 

  19. 19

    Ando, Y. et al. Electronic phase diagram of high-T c cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004)

    ADS  Article  CAS  PubMed  Google Scholar 

  20. 20

    Matusiak, M. et al. Influence of the pseudogap on the Nernst coefficient of Y0. 9Ca0. 1Ba2Cu3O y . Europhys. Lett. 86, 17005 (2009)

    ADS  Article  CAS  Google Scholar 

  21. 21

    Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007)

    ADS  Article  CAS  PubMed  Google Scholar 

  22. 22

    Hackl, A., Vojta, M. & Sachdev, S. Quasiparticle Nernst effect in stripe-ordered cuprates. Preprint at 〈http://arXiv.org/abs/0908.1088〉 (2009)

  23. 23

    Hackl, A. & Vojta, M. Nernst effect anisotropy as a sensitive probe of Fermi surface distortions from electron-nematic order. Preprint at 〈http://arXiv.org/abs/0909.4534v2〉 (2009)

  24. 24

    Cyr-Choinière, O. et al. Enhancement of the Nernst effect by stripe order in a high-T c superconductor. Nature 458, 743–745 (2009)

    ADS  Article  CAS  PubMed  Google Scholar 

  25. 25

    Daou, R. et al. Linear temperature dependence of the resistivity and change in Fermi surface at the pseudogap critical point of a high-T c superconductor. Nature Phys. 5, 31–34 (2009)

    ADS  Article  CAS  Google Scholar 

  26. 26

    Ichikawa, N. et al. Local magnetic order vs superconductivity in a layered cuprate. Phys. Rev. Lett. 85, 1738–1741 (2000)

    ADS  Article  CAS  PubMed  Google Scholar 

  27. 27

    Taillefer, L. Fermi surface reconstruction in high-T c superconductors. J. Phys. Condens. Matter 21, 164212 (2009)

    ADS  Article  CAS  PubMed  Google Scholar 

  28. 28

    Chang, J. et al. Thermo-electric study of Fermi surface reconstruction in YBa2Cu3O y . Preprint at 〈http://arXiv.org/abs/0907.5039〉 (2009)

  29. 29

    LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-T c superconductors. Nature 450, 533–536 (2007)

    ADS  Article  CAS  PubMed  Google Scholar 

  30. 30

    Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    ADS  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Behnia, R. L. Greene, C. Kallin, S. A. Kivelson, A. J. Millis, C. Proust, S. Sachdev, A.-M. S. Tremblay and M. Vojta for discussions, and J. Corbin for his assistance with the experiments. J.C. was supported by fellowships from the Swiss National Science Foundation and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT). L.T. acknowledges support from the Canadian Institute for Advanced Research and funding from the Canadian Natural Sciences and Engineering Research Council, the FQRNT, the Canada Foundation for Innovation and a Canada Research Chair.

Author Contributions R.D., J.C., D.L., O.C.-C., F.L. and N.D.-L. performed the Nernst and resistivity measurements; R.D., J.C. and D.L. analysed the Nernst data; B.J.R., R.L., D.A.B. and W.N.H. prepared the samples at the University of British Columbia (crystal growth, annealing, de-twinning, contacts); and L.T. supervised the project and wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louis Taillefer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Data, Supplementary Table S1, Supplementary Figure S1-S9 with Legends and Supplementary References. (PDF 1558 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daou, R., Chang, J., LeBoeuf, D. et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 463, 519–522 (2010). https://doi.org/10.1038/nature08716

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing