Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation


The class of exotic Jupiter-mass planets that orbit very close to their parent stars were not explicitly expected before their discovery1. The recently discovered2 transiting planet WASP-12b has a mass M = 1.4 ± 0.1 Jupiter masses (MJ), a mean orbital distance of only 3.1 stellar radii (meaning it is subject to intense tidal forces), and a period of 1.1 days. Its radius 1.79 ± 0.09RJ is unexpectedly large and its orbital eccentricity 0.049 ± 0.015 is even more surprising because such close orbits are usually quickly circularized. Here we report an analysis of its properties, which reveals that the planet is losing mass to its host star at a rate of about 10-7MJ per year. The planet’s surface is distorted by the star’s gravity and the light curve produced by its prolate shape will differ by about ten per cent from that of a spherical planet. We conclude that dissipation of the star’s tidal perturbation in the planet’s convective envelope provides the energy source for its large volume. We predict up to 10 mJy CO band-head (2.292 μm) emission from a tenuous disk around the host star, made up of tidally stripped planetary gas. It may also contain a detectable resonant super-Earth, as a hypothetical perturber that continually stirs up WASP-12b’s eccentricity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WASP-12b’s surfaces.

Similar content being viewed by others


  1. Mayor, M. & Queloz, D. A. Jupiter-mass companion to a solar-type star. Astrophys. J. 378, 355–359 (1995)

    CAS  Google Scholar 

  2. Hebb, L. et al. WASP-12 b: the hottest transiting extra solar-planet yet discovered. Astrophys. J. 693, 1920–1928 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Bodenheimer, P., Laughlin, G. & Lin, D. N. C. On the radii of extrasolar giant planets. Astrophys. J. 592, 555–563 (2003)

    Article  ADS  Google Scholar 

  4. Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Bodenheimer, P., Lin, D. N. C. & Mardling, R. A. On the tidal inflation of short-period extrasolar planets. Astrophys. J. 548, 466–472 (2001)

    Article  ADS  Google Scholar 

  6. Guillot, T., Burrow, A., Hubbard, W. B., Lunine, J. I. & Saumon, D. Giant planets at small orbital distances. Astrophys. J. 459, L35–L38 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Dobbs-Dixon, I. & Lin, D. N. C. Atmospheric dynamics of short-period extrasolar gas giant planets. I. Dependence of nightside temperature on opacity. Astrophys. J. 673, 513–525 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Garcia Munoz, A. Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426–1455 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Hubbard, W. B., Hattori, M. F., Burrows, A., Hubeny, I. & Sudarksy, D. Effects of mass loss for highly-irradiated giant planets. Icarus 187, 358–364 (2007)

    Article  ADS  Google Scholar 

  10. Dobbs-Dixon, I., Lin, D. N. C. & Mardling, R. A. Spin-orbit evolution of short-period planets. Astrophys. J. 610, 464–476 (2004)

    Article  ADS  Google Scholar 

  11. Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  12. Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating giant planets. Astrophys. J. 610, 477–509 (2004)

    Article  ADS  Google Scholar 

  13. Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 1180–1191 (2007)

    Article  ADS  Google Scholar 

  14. Yoder, C. F. & Peale, S. J. The tide of Io. Icarus 47, 1–35 (1981)

    Article  ADS  Google Scholar 

  15. Knutson, H. et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Lin, D. N. C. & Papaloizou, J. C. B. in Protostars and Planets III (eds Black, D. & Mathews, M.) 749–835 (University of Arizona Press, 1993)

    Google Scholar 

  17. Adams, F. C., Shu, F. H. & Lada, C. J. The disks of T Tauri stars with flat infrared spectra. Astrophys. J. 326, 865–883 (1988)

    Article  ADS  Google Scholar 

  18. Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998)

    Article  ADS  Google Scholar 

  19. Najita, J., Carr, J. S., Glassgold, A. E., Shu, F. H. & Tokunaga, A. T. Kinematic diagnostics of disks around young stars: CO overtone emission from WL 16 and 1548C27. Astrophys. J. 462, 919–936 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Vauclair, S. Metallic fingers and metallicity excess in exoplanets’ host stars: the accretion hypothesis revisited. Astrophys. J. 605, 874–879 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Sasselov, D. D. The new transiting planet OGLE-TR-56b: orbit and atmosphere. Astrophys. J. 596, 1327–1331 (2003)

    Article  ADS  Google Scholar 

  22. Hellier, C. et al. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Meibom, S., Mathieu, R. D. & Stassun, K. G. An observational study of tidal synchronization in solar-type binary stars in the open clusters M35 and M34. Astrophys. J. 653, 621–635 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Peale, S., Cassen, P. & Reynolds, R. T. Melting Io by tidal dissipation. Science 203, 892–894 (1979)

    Article  ADS  CAS  Google Scholar 

  25. Lin, D. N. C. & Papaloizou, J. On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites. Mon. Not. R. Astron. Soc. 188, 191–201 (1979)

    Article  ADS  Google Scholar 

  26. Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002)

    Article  ADS  Google Scholar 

Download references


This work is supported by the Kavli Foundation, which enabled the initiation and development of this work at KIAA-PKU. It is also supported by NASA, JPL and the NSF.

Author Contributions S.-l.L. and D.N.C.L. constructed arguments for mass loss and tidal heating of WASP-12b, and also composed the draft of the paper. N.M. brought WASP-12b’s large radius to the attention of the team and designed the illustration. J.J.F. contributed information on the planet’s opacity and improved the presentation of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Douglas N. C. Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains supplementary Methods and Supplementary References. (PDF 81 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Sl., Miller, N., Lin, D. et al. WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature 463, 1054–1056 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing