Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong crystal size effect on deformation twinning

Abstract

Deformation twinning1,2,3,4,5,6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7,8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9,10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11,12,13,14,15,16,17 relevant for applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscopy images of the deformed micropillars and EBSD pole figure.
Figure 2: Mechanical data of the tested samples.
Figure 3: Electron microscopy images of the tested samples.
Figure 4: Schematic of the ‘stimulated slip’ model.

Similar content being viewed by others

References

  1. Chen, M. W. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995)

    Article  Google Scholar 

  3. Ogata, S., Li, J. & Yip, S. Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102 (2005)

    Article  ADS  Google Scholar 

  4. Wu, X. L. & Zhu, Y. T. Inverse grain-size effect on twinning in nanocrystalline Ni. Phys. Rev. Lett. 101, 025503 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Warner, D. H., Curtin, W. A. & Qu, S. Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nature Mater. 6, 876–881 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Niewczas, M. in Dislocations in Solids Vol. 13 (eds Nabarro, F. R. N. & Hirth, J. P.) 263–364 (Elsevier, 2007)

    Book  Google Scholar 

  7. Song, S. G. & Gray, G. T. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti. Acta Metall. Mater. 43, 2325–2350 (1995)

    Article  CAS  Google Scholar 

  8. Williams, J. C., Baggerly, R. G. & Paton, N. E. Deformation behavior of HCP Ti-Al alloy single crystals. Metall. Mater. Trans. A 33, 837–850 (2002)

    Article  Google Scholar 

  9. Ogata, S., Li, J., Hirosaki, N., Shibutani, Y. & Yip, S. Ideal shear strain of metals and ceramics. Phys. Rev. B 70, 104104 (2004)

    Article  ADS  Google Scholar 

  10. Suresh, S. & Li, J. Deformation of the ultra-strong. Nature 456, 716–717 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Argon, A. S. & Yip, S. The strongest size. Phil. Mag. Lett. 86, 713–720 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Schiotz, J. & Jacobsen, K. W. A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Shan, Z. W. et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Shan, Z. W., Mishra, R. K., Asif, S. A. S., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater. 7, 115–119 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005)

    Article  CAS  Google Scholar 

  18. Meyers, M. A., Vohringer, O. & Lubarda, V. A. The onset of twinning in metals: a constitutive description. Acta Mater. 49, 4025–4039 (2001)

    Article  CAS  Google Scholar 

  19. Stanford, N., Carlson, U. & Barnett, M. R. Deformation twinning and the Hall-Petch relation in commercial purity Ti. Metall. Mater. Trans. A 39, 934–944 (2008)

    Article  Google Scholar 

  20. El-Danaf, E., Kalidindi, S. R. & Doherty, R. D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall. Mater. Trans. A 30, 1223–1233 (1999)

    Article  Google Scholar 

  21. Paton, N. E. & Backofen, W. A. Plastic deformation of titanium at elevated temperatures. Metall. Trans. 1, 2839–2847 (1970)

    CAS  Google Scholar 

  22. Akhtar, A. Basal slip and twinning in alpha-titanium single-crystals. Metall. Trans. A 6, 1105–1113 (1975)

    Article  Google Scholar 

  23. Yoo, M. H. Twinning and mechanical behavior of titanium aluminides and other intermetallics. Intermetallics 6, 597–602 (1998)

    Article  CAS  Google Scholar 

  24. Xiao, L. Twinning behavior in the Ti-5 at.% Al single crystals during cyclic loading along. Mater. Sci. Eng. A 394, 168–175 (2005)

    Article  Google Scholar 

  25. Svelto, O. Principles of Lasers (Springer, 1998)

    Book  Google Scholar 

  26. Cottrell, A. H. & Bilby, B. A. A mechanism for the growth of deformation twins in crystals. Phil. Mag. 42, 573–581 (1951)

    Article  CAS  Google Scholar 

  27. Niewczas, M. & Saada, G. Twinning nucleation in Cu-8 at.% Al single crystals. Phil. Mag. A 82, 167–191 (2002)

    ADS  CAS  Google Scholar 

  28. Song, S. G. & Gray, G. T. Double dislocation pole model for deformation twinning in fcc lattices. Phil. Mag. A 71, 661–670 (1995)

    Article  ADS  CAS  Google Scholar 

  29. El-Azab, A. The statistical mechanics of strain-hardened metals. Science 320, 1729–1730 (2008)

    Article  CAS  Google Scholar 

  30. Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Q. Liu for help with EBSD experiments. This work was supported by grants from the NSFC (50671077, 50720145101, 50831004 and 50925104), the 973 Program of China (2004CB619303, 2007CB613804 and 2010CB613003) and the 111 Project of China (B06025). J.L. was supported by ONR grant N00014-05-1-0504, NSF grant CMMI-0728069, MRSEC grant DMR-0520020 and AFOSR grant FA9550-08-1-0325. X.H. was supported by the Danish National Research Foundation. The in situ TEM work was performed at the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, which is supported by the US Department of Energy under contract DE-AC02-05CH11231.

Author Contributions Q.Y. and Z.-W.S. carried out the experiments, J.L. constructed the model, X.H. interpreted the EBSD results, L.X. supervised the sample selection, J.S. designed the project, J.L. and E.M. wrote the paper. All authors contributed to the discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju Li or Jun Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure S1- S5 with Legends, Supplementary Methods, Supplementary Table S1, Supplementary Data and Supplementary References. (PDF 732 kb)

Supplementary Movie 1

This movie shows the in situ compression of the 250 nm Ti-5at% Al single crystal pillar in TEM. (MOV 7748 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Shan, ZW., Li, J. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010). https://doi.org/10.1038/nature08692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08692

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing