Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The first decade of science with Chandra and XMM-Newton

Abstract

NASA’s Chandra X-ray Observatory and the ESA’s X-ray Multi-Mirror Mission (XMM-Newton) made their first observations ten years ago. The complementary capabilities of these observatories allow us to make high-resolution images and precisely measure the energy of cosmic X-rays. Less than 50 years after the first detection of an extrasolar X-ray source, these observatories have achieved an increase in sensitivity comparable to going from naked-eye observations to the most powerful optical telescopes over the past 400 years. We highlight some of the many discoveries made by Chandra and XMM-Newton that have transformed twenty-first century astronomy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chandra image of the Cassiopeia A supernova remnant.
Figure 2: Composite of XMM-Newton optical-ultraviolet and X-ray images of the starburst galaxy Messier 82.
Figure 3: Portion of an XMM-Newton reflection-grating spectrum of the disk of Mars.
Figure 4: XMM-Newton X-ray spectra of different types of stars.
Figure 5: Deep Chandra image of the Orion nebula cluster.
Figure 6: Chandra (2″ × 2″) images detailing the expanding and brightening ring surrounding the stellar explosion SN 1987A.
Figure 7: Chandra (2′ × 2′) image of the Crab nebula and pulsar.
Figure 8: X-ray image of thousands of sources in the XMM-Newton COSMOS field.
Figure 9: Chandra image of Centaurus A.
Figure 10: Colliding clusters of galaxies and dark matter.

References

  1. 1

    Weisskopf, M. C. et al. An overview of the performance and scientific results from the Chandra X-Ray observatory. Publ. Astron. Soc. Pacif. 114, 1–24 (2002)

    ADS  Google Scholar 

  2. 2

    Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001)

    ADS  Google Scholar 

  3. 3

    Bhardwaj, A. et al. X-rays from solar system objects. Planet. Space Sci. 55, 1135–1189 (2007)Excellent overview of the progress made in this sub-discipline.

    ADS  Google Scholar 

  4. 4

    Guedel, M. & Naze, Y. X-ray spectroscopy of stars. Astron. Astrophys. Rev. 17, 309–408 (2009)Comprehensive review of the progress in stellar astronomy fostered by Chandra and XMM-Newton.

    ADS  Google Scholar 

  5. 5

    Wolk, S. J. et al. Stellar activity on the young suns of Orion: COUP observations of K5–7 pre-main-sequence stars. Astrophys. J. 160 (Suppl.). 423–449 (2005)

    CAS  Google Scholar 

  6. 6

    Vink, J. X-ray high resolution and imaging spectroscopy of supernova remnants. Proc. X-ray Universe 2005 (ESA SP-604) (ed. Wilson, A.) 319–327 (European Space Agency, 2006)

    Google Scholar 

  7. 7

    Weisskopf, M. C. & Hughes, J. P. Six Years of Chandra Observations of Supernova Remnants, Astrophysics Update 2 (ed. Mason, J. W.) 55–113 (Springer, 2006)

    Google Scholar 

  8. 8

    Revnivtsev, M. et al. Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 458, 1142–1144 (2009)

    ADS  CAS  Google Scholar 

  9. 9

    Brandt, W. N. & Hasinger, G. Deep extragalactic X-ray surveys. Annu. Rev. Astron. Astrophys. 43, 827–859 (2005)

    ADS  Google Scholar 

  10. 10

    Turner, T. J. & Miller, L. X-ray absorption and reflection in active galactic nuclei. Astron. Astrophys. Rev. 17, 47–104 (2009)

    ADS  Google Scholar 

  11. 11

    Miller, J. M. et al. Stellar-mass black hole spin constraints from disk reflection and continuum modeling. Astrophys. J. 697, 900–912 (2009)

    ADS  CAS  Google Scholar 

  12. 12

    Weisskopf, M. C. et al. Discovery of spatial and spectral structure in the X-ray emission from the Crab nebula. Astrophys. J. 536, L81–L84 (2000)The clearest view yet of the entire X-ray synchrotron nebula, revealing the inner ring and bright spot near the pulsar.

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Gaensler, B. M. & Slane, P. O. The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 44, 17–47 (2006)

    ADS  Google Scholar 

  14. 14

    Cattaneo, A. et al. The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009)

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006)Observations show that the distribution of X-ray-emitting plasma separated from that of the total mass, providing direct evidence for the existence of dark matter.

    ADS  CAS  Google Scholar 

  16. 16

    Allen, S. W. et al. Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 383, 879–896 (2008)

    ADS  CAS  Google Scholar 

  17. 17

    Vikhlinin, A. et al. Chandra Cluster Cosmology Project III: Cosmological parameter constraints. Astrophys. J. 692, 1060–1074 (2009)Uses observed rate of growth of galaxy clusters to measure the accelerated expansion of the Universe.

    ADS  Google Scholar 

  18. 18

    Dennerl, K. X-rays from Venus observed with Chandra. Planet. Space Sci. 56, 1414–1423 (2008)

    ADS  CAS  Google Scholar 

  19. 19

    Bhardwaj, A. et al. First terrestrial soft X-ray auroral observation by the Chandra X-ray Observatory. J. Atmos. Sol. Terr. Phys. 69, 179–187 (2007)

    ADS  Google Scholar 

  20. 20

    Wargelin, B. J. et al. Chandra observations of the “dark” moon and geocoronal solar wind charge transfer. Astrophys. J. 607, 596–610 (2004)

    ADS  CAS  Google Scholar 

  21. 21

    Dennerl, K. X-Rays from Mars. Space Sci. Rev. 126, 403–433 (2006)

    ADS  Google Scholar 

  22. 22

    Branduardi-Raymont, G. et al. Spectral morphology of the X-ray emission from Jupiter’s aurorae. J. Geophys. Res. 113, A02202 (2008)

    ADS  Google Scholar 

  23. 23

    Elsner, R. F. et al. X-ray probes of magnetospheric interactions with Jupiter’s auroral zones, the Galilean satellites, and the Io plasma torus. Icarus 178, 417–428 (2005)

    ADS  CAS  Google Scholar 

  24. 24

    Branduardi-Raymont, G. Latest results on Jovian disk X-rays from XMM-Newton. Planet. Space Sci. 55, 1126–1134 (2007)

    ADS  CAS  Google Scholar 

  25. 25

    Ness, J. U., Schmitt, J. H. M. M. & Robrade, J. Detection of Saturnian X-ray emission with XMM-Newton. Astron. Astrophys. 414, L49–L52 (2004)

    ADS  Google Scholar 

  26. 26

    Ness, J. U. et al. X-ray emission from Saturn. Astron. Astrophys. 418, 337–345 (2004)

    ADS  CAS  Google Scholar 

  27. 27

    Bhardwaj, A. et al. Chandra observation of an X-ray flare at Saturn: evidence of direct solar control on Saturn’s disk X-ray emissions. Astrophys. J. 624, L121–L124 (2005)

    ADS  CAS  Google Scholar 

  28. 28

    Bhardwaj, A. et al. The discovery of oxygen Kα X-ray emission from the rings of Saturn. Astrophys. J. 627, L73–L76 (2005)

    ADS  CAS  Google Scholar 

  29. 29

    Bodewits, D. et al. Spectral analysis of the Chandra comet survey. Astron. Astrophys. 469, 1183–1195 (2007)

    ADS  CAS  Google Scholar 

  30. 30

    Schulz, R. et al. Detection of water ice grains after the DEEP IMPACT onto Comet 9P/Tempel 1. Astron. Astrophys. 448, L53–L56 (2006)

    ADS  CAS  Google Scholar 

  31. 31

    Snowden, S. L. et al. Observation of solar wind charge exchange emission from exospheric material in and outside Earth’s magnetosheath 2008 September 25. Astrophys. J. 691, 372–381 (2009)

    ADS  CAS  Google Scholar 

  32. 32

    Snowden, S. L., Collier, M. R. & Kuntz, K. D. XMM-Newton Observation of Solar Wind Charge Exchange Emission. Astrophys. J. 610, 1182–1190 (2004)

    ADS  CAS  Google Scholar 

  33. 33

    Koutroumpa, D. et al. The solar wind charge-exchange contribution to the local soft X-ray background. Model to data comparison in the 0.1–1.0 keV band. Space Sci. Rev. 143, 217–230 (2009)

    ADS  CAS  Google Scholar 

  34. 34

    Guedel, M. et al. The XMM-Newton extended survey of the Taurus molecular cloud (XEST). Astron. Astrophys. 468, 353–377 (2007)

    ADS  Google Scholar 

  35. 35

    Feigelson, E. D. et al. Global X-ray properties of the Orion nebula region. Astrophys. J. 160 (Suppl.). 379–389 (2005)

    CAS  Google Scholar 

  36. 36

    Getman, K. V. et al. Chandra Orion Ultradeep Project: observations and source lists. Astrophys. J. 160 (Suppl.). 319–352 (2005)

    CAS  Google Scholar 

  37. 37

    Guedel, M. & Telleschi, A. The X-ray soft excess in classical T Tauri stars. Astron. Astrophys. 474, L25–L28 (2007)

    ADS  CAS  Google Scholar 

  38. 38

    Tsujimoto, M. et al. Iron fluorescent line emission from young stellar objects in the Orion nebula. Astrophys. J. 160 (Suppl.). 503–510 (2005)

    CAS  Google Scholar 

  39. 39

    Favata, F. et al. Bright X-ray flares in Orion young stars from COUP: Evidence for star-disk magnetic fields? Astrophys. J. 160 (Suppl.). 469–502 (2005)

    CAS  Google Scholar 

  40. 40

    Alexander, R. From discs to planetesimals: Evolution of gas and dust discs. N. Astron. Rev. 52, 60–77 (2008)

    ADS  Google Scholar 

  41. 41

    Guedel, M. et al. Million-degree plasma pervading the extended Orion nebula. Science 319, 309–312 (2008)

    ADS  CAS  Google Scholar 

  42. 42

    Castor, J., McCray, R. & Weaver, R. Interstellar bubbles. Astrophys. J. 200, L107–L110 (1975)

    ADS  CAS  Google Scholar 

  43. 43

    Zhekov, S. A. et al. Chandra LETG observations of supernova remnant 1987A. Astrophys. J. 645, 293–302 (2006)

    ADS  CAS  Google Scholar 

  44. 44

    Zhekov, S. et al. High-resolution X-ray spectroscopy of SNR 1987A: Chandra LETG and HETG observations in 2007. Astrophys. J. 692, 1190–1204 (2009)

    ADS  CAS  Google Scholar 

  45. 45

    Racusin, J. et al. X-ray evolution of SNR 1987A: The radial expansion. Astrophys. J. 703, 1752–1759 (2009)

    ADS  Google Scholar 

  46. 46

    Laming, J. M. et al. The polar regions of Cassiopeia A: The aftermath of a gamma-ray burst? Astrophys. J. 644, 260–273 (2006)

    ADS  CAS  Google Scholar 

  47. 47

    Lopez, L. A. et al. Tools for dissecting supernova remnants observed with Chandra: Methods and application to the galactic remnant W49B. Astrophys. J. 691, 875–893 (2009)

    ADS  CAS  Google Scholar 

  48. 48

    Ho, W. & Heinke, C. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Nature 462, 71–73 (2009)

    ADS  CAS  PubMed  Google Scholar 

  49. 49

    Reynolds, S. P. et al. A deep Chandra observation of Kepler’s supernova remnant: A type Ia event with circumstellar interaction. Astrophys. J. 668, L135–L138 (2007)

    ADS  CAS  Google Scholar 

  50. 50

    Reynolds, S. Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)

    ADS  CAS  Google Scholar 

  51. 51

    Butt, Y. Beyond the myth of the supernova-remnant origin of cosmic rays. Nature 460, 701–704 (2009)

    ADS  CAS  PubMed  Google Scholar 

  52. 52

    Abuberkerov, M. et al. The Mass of the black hole in the X-ray binary M33 X-7 and the evolutionary status of M33 X-7 and IC 10 X-1. Astron. Rep. 53, 232–242 (2009)

    ADS  Google Scholar 

  53. 53

    Liu, J. et al. Precise measurement of the spin parameter of the stellar-mass black hole M33 X-7. Astrophys. J. 679, L37–L40 (2008)

    ADS  CAS  Google Scholar 

  54. 54

    Baganoff, F. K. et al. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature 413, 45–48 (2001)

    ADS  CAS  Google Scholar 

  55. 55

    Porquet, D. et al. XMM-Newton observation of the brightest X-ray flare detected so far from Sgr A*. Astron. Astrophys. 407, L17–L20 (2003)

    ADS  Google Scholar 

  56. 56

    Komossa, S. et al. A huge drop in the X-ray luminosity of the nonactive galaxy RX J1242.6–1119A, and the first postflare spectrum: testing the tidal disruption scenario. Astrophys. J. 603, L17–L20 (2004)

    ADS  Google Scholar 

  57. 57

    Komossa, S. et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. 582, L15–L19 (2003)

    ADS  CAS  Google Scholar 

  58. 58

    Brunner, H. et al. XMM-Newton observations of the Lockman Hole: X-ray source catalogue and number counts. Astron. Astrophys. 479, 283–300 (2008)Tracing the evolution of the supermassive black hole population, thus revealing the accretion history of the Universe.

    ADS  Google Scholar 

  59. 59

    Fiore, F. et al. Chasing highly obscured QSOs in the COSMOS field. Astrophys. J. 693, 447–462 (2009)

    ADS  CAS  Google Scholar 

  60. 60

    Brusa, M. et al. High-redshift quasars in the COSMOS survey: the space density of z > 3 X-ray selected QSOs. Astrophys. J. 693, 8–22 (2009)

    ADS  CAS  Google Scholar 

  61. 61

    Hasinger, G. et al. The XMM-Newton wide-field survey in the COSMOS field: I. Survey description. Astrophys. J. 172 (Suppl.). 29–37 (2007)

    CAS  Google Scholar 

  62. 62

    Silverman, J. D. et al. The luminosity function of X-ray-selected active galactic nuclei: Evolution of supermassive black holes at high redshift. Astrophys. J. 679, 118–139 (2008)

    ADS  CAS  Google Scholar 

  63. 63

    Yencho, B. et al. The OPTX Project. II. Hard X-ray luminosity functions of active galactic nuclei for z 5. Astrophys. J. 698, 380–396 (2009)

    ADS  Google Scholar 

  64. 64

    Hasinger, G., Miyaji, T. & Schmidt, M. Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys. Astron. Astrophys. 441, 417–434 (2005)

    ADS  CAS  Google Scholar 

  65. 65

    Hopkins, P. & Hernquist, L. A characteristic division between the fueling of quasars and Seyferts: five simple tests. Astrophys. J. 694, 599–609 (2009)

    ADS  Google Scholar 

  66. 66

    Miller, J. M. Relativistic X-ray lines from the inner accretion disks around black holes. Annu. Rev. Astron. Astrophys. 45, 441–447 (2007)

    ADS  CAS  Google Scholar 

  67. 67

    Iwasawa, K., Miniutti, G. & Fabian, A. Flux and energy modulation of redshifted iron emission in NGC 3516: implications for the black hole mass. Mon. Not. R. Astron. Soc. 355, 1073–1079 (2004)

    ADS  CAS  Google Scholar 

  68. 68

    Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707–495. Nature 459, 540–542 (2009)

    ADS  CAS  PubMed  Google Scholar 

  69. 69

    Gierliński, M. et al. A periodicity of 1 hour in X-ray emission from the active galaxy RE J1034+396. Nature 455, 369–371 (2008)

    ADS  PubMed  Google Scholar 

  70. 70

    Kinkhabwala, A. et al. XMM-Newton reflection grating spectrometer observations of discrete soft X-ray emission features from NGC 1068. Astrophys. J. 575, 732–746 (2002)

    ADS  CAS  Google Scholar 

  71. 71

    Worrall, D. M. The X-ray jets of active galaxies. Astron. Astrophys. Rev. 17, 1–46 (2009)

    ADS  Google Scholar 

  72. 72

    Harris, D. & Krawczynsk, H. X-ray emission from extragalactic jets. Annu. Rev. Astron. Astrophys. 44, 463–508 (2006)

    ADS  Google Scholar 

  73. 73

    Peterson, J. R. & Fabian, A. C. X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006)

    ADS  Google Scholar 

  74. 74

    Fabian, A. C. et al. A deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 344, L43 (2003)X-ray and radio structures in cluster core suggest that sound waves powered by jets from the central supermassive black hole provide the energy needed to offset radiative cooling losses.

    ADS  Google Scholar 

  75. 75

    Boehringer, H. et al. A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, L25–L28 (1993)

    ADS  Google Scholar 

  76. 76

    McNamara, B. & Nulsen, P. Heating hot atmospheres with active galacti nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007)

    ADS  Google Scholar 

  77. 77

    Forman, W. et al. Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665, 1057–1066 (2007)

    ADS  CAS  Google Scholar 

  78. 78

    Simionescu, A. et al. The gaseous atmosphere of M 87 seen with XMM-Newton. Astron. Astrophys. 465, 749–758 (2007)

    ADS  CAS  Google Scholar 

  79. 79

    de Plaa, J. et al. Constraining supernova models using the hot gas in clusters of galaxies. Astron. Astrophys. 465, 345–355 (2007)

    ADS  CAS  Google Scholar 

  80. 80

    Anderson, M. E. et al. Redshift evolution in the iron abundance of the intracluster medium. Astrophys. J. 698, 317–323 (2009)

    ADS  CAS  Google Scholar 

  81. 81

    Komatsu, E. et al. Five-year Wilkinson microwave anisotropy probe. Observations: Cosmological interpretation. Astrophys. J. 180 (Suppl.). 330–376 (2009)

    Google Scholar 

  82. 82

    Boyarsky, A. et al. Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters. Phys. Rev. D. 74, 3506 (2006)

    Google Scholar 

  83. 83

    Pointecouteau, E., Arnaud, M. & Pratt, G. W. The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile. Astron. Astrophys. 435, 1–7 (2005)

    ADS  Google Scholar 

  84. 84

    Vikhlinin, A. et al. Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass-temperature relation. Astrophys. J. 640, 691–709 (2006)

    ADS  CAS  Google Scholar 

  85. 85

    Lewis, A. D., Buote, D. A. & Stocke, J. T. Chandra observations of A2029: the dark matter profile down to below 0.01 r vir in an unusually relaxed cluster. Astrophys. J. 586, 135–142 (2003)

    ADS  Google Scholar 

  86. 86

    Zappacosta, L. The absence of adiabatic contraction of the radial dark matter profile in the galaxy cluster A2589. Astrophys. J. 650, 777–790 (2006)

    ADS  CAS  Google Scholar 

  87. 87

    Massey, R. et al. Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007)

    ADS  CAS  Google Scholar 

  88. 88

    Shakespeare, W. The Tempest Act 2, Scene 1 (Oxford Univ. Press, 1914)

    Google Scholar 

  89. 89

    Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. 615, L117–L120 (2004)

    ADS  CAS  Google Scholar 

  90. 90

    Ranalli, P. et al. A deep X-ray observation of M82 with XMM-Newton. Mon. Not. R. Astron. Soc. 386, 1460–1480 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

We feel privileged to be a part of the teams responsible for Chandra and XMM-Newton and wish to acknowledge both NASA and ESA for their continued support for these missions. We also acknowledge the contributions of the thousands throughout the world who have worked so hard to make these observatories so successful.

Author Contributions All of the authors worked together to produce the manuscript. M.C.W. led the effort on Solar System objects; M.S.-L. on individual stars and star-forming regions; M.C.W. on supernova remnants and massive stellar black holes; N.S. on supermassive black hole census and evolution; H.T. and W.T. on supermassive black holes and clusters of galaxies; and N.S. on dark matter and dark energy. W.T. served most ably as editor and supported all the sections. M.C.W. was the executive editor.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin C. Weisskopf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santos-Lleo, M., Schartel, N., Tananbaum, H. et al. The first decade of science with Chandra and XMM-Newton. Nature 462, 997–1004 (2009). https://doi.org/10.1038/nature08690

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links