Preparation and detection of a mechanical resonator near the ground state of motion

Abstract

Cold, macroscopic mechanical systems are expected to behave contrary to our usual classical understanding of reality; the most striking and counterintuitive predictions involve the existence of states in which the mechanical system is located in two places simultaneously. Various schemes have been proposed to generate and detect such states1,2, and all require starting from mechanical states that are close to the lowest energy eigenstate, the mechanical ground state. Here we report the cooling of the motion of a radio-frequency nanomechanical resonator by parametric coupling to a driven, microwave-frequency superconducting resonator. Starting from a thermal occupation of 480 quanta, we have observed occupation factors as low as 3.8 ± 1.3 and expect the mechanical resonator to be found with probability 0.21 in the quantum ground state of motion. Further cooling is limited by random excitation of the microwave resonator and heating of the dissipative mechanical bath. This level of cooling is expected to make possible a series of fundamental quantum mechanical observations including direct measurement of the Heisenberg uncertainty principle and quantum entanglement with qubits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nanomechanical device, measurement diagram and thermal calibration.
Figure 2: Measured noise spectra.
Figure 3: Nanomechanical heating rate and superconducting-resonator occupation versus pump strength.
Figure 4: Mechanical linewidth broadening and cooling versus pump strength.

References

  1. 1

    Armour, A., Blencowe, M. & Schwab, K. Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superposition of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Courty, J. M., Heidmann, A. & Pinard, M. Quantum limits of cold damping with optomechanical coupling. Eur. Phys. J. D 17, 399–408 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Martin, I., Shnirman, A., Tian, L. & Zoller, P. Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)

    ADS  Article  Google Scholar 

  6. 6

    Blencowe, M. P. & Buks, E. Quantum analysis of a linear dc SQUID mechanical displacement detector. Phys. Rev. B 76, 014511 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    ADS  Article  Google Scholar 

  8. 8

    Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Park, Y.-S. & Wang, H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489–493 (2009)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Groblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485–488 (2009)

    ADS  Article  Google Scholar 

  12. 12

    Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008)

    CAS  Article  Google Scholar 

  14. 14

    Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998)

    ADS  Article  Google Scholar 

  15. 15

    Dykman, M. I. Heating and cooling of local and quasilocal vibrations by nonresonant eld. Sov. Phys. Solid State 20, 1306 (1978)

    Google Scholar 

  16. 16

    Linthorne, N. P., Veitch, P. J. & Blair, D. G. Interaction of a parametric transducer with a resonant bar gravitational radiation detector. J. Phys. D 23, 1–6 (1990)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Xue, F., Wang, Y. D., Liu, Y.-X. & Nori, F. Cooling a micromechanical beam by coupling it to a transmission line. Phys. Rev. B 76, 205302 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Diedrich, F., Bergquist, J. C., Itano, W. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Blair, D. G. et al. High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 74, 1908–1911 (1995)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Teufel, J. D., Regal, C. A. & Lehnert, K. W. Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator. New J. Phys. 10, 095002 (2008)

    ADS  Article  Google Scholar 

  23. 23

    Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5mk. Phys. Rev. Lett. 99, 017201 (2007)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Grajcar, M., Ashhab, S., Johansson, J. R. & Nori, F. Lower limit on the achievable temperature in resonator-based sideband cooling. Phys. Rev. B 78, 035406 (2008)

    ADS  Article  Google Scholar 

  26. 26

    Shytov, A. V., Levitov, L. S. & Beenakker, C. W. J. Electromechanical noise in a diffusive conductor. Phys. Rev. Lett. 88, 228303 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008)

    ADS  Article  Google Scholar 

  28. 28

    Utami, D. W. & Clerk, A. A. Entanglement dynamics in a dispersively coupled qubit-oscillator system. Phys. Rev. A 78, 042323 (2008)

    ADS  Article  Google Scholar 

  29. 29

    Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008)

    ADS  Article  Google Scholar 

  30. 30

    Segev, E., Abdo, B., Shtempluck, O. & Buks, E. Thermal instability and self-sustained modulation in superconducting NbN stripline resonators. J. Phys. Condens. Matter 19, 096206 (2007)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge conversations with M. Blencowe, M. Aspelmeyer, R. Ilic, M. Skvarla, M. Metzler and M. Shaw and assistance from M. Savva, S. Rosenthal and M. Corbett. This work has been supported by the Fundamental Questions Institute (http://fqxi.org) (RFP2-08-27) and the US National Science Foundation (NSF) (DMR-0804567). Device fabrication was performed at the Cornell Nanoscale Facility, a member of the US National Nanotechnology Infrastructure Network (NSF grant ECS-0335765).

Author Contributions T.R. and T.N. contributed equally to device fabrication and measurements. C.M. built key apparatus and assisted in experimental set-up. J.B.H. assisted in planning and analysis. A.A.C. provided theoretical analysis. K.C.S. initiated and oversaw the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. C. Schwab.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, Supplementary Figures 1-2 with Legends and Supplementary References. (PDF 328 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rocheleau, T., Ndukum, T., Macklin, C. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010). https://doi.org/10.1038/nature08681

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing