Abstract

A decade ago, the detection of the first1,2 transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres3. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies4,5,6 and microlensing7 have uncovered a population of planets with minimum masses of 1.9–10 times the Earth’s mass (M), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M and a radius 2.68 times Earth’s radius (R), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen–helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Detection of planetary transits across a sun-like star. Astrophys. J. 529, L45–L48 (2000)

  2. 2.

    , , & A transiting ‘51-Peg-like’ planet. Astrophys. J. 529, L41–L44 (2000)

  3. 3.

    , , & in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 701–716 (Univ. Arizona Press, 2007)

  4. 4.

    et al. A 7.5 M planet orbiting the nearby star, GJ 876. Astrophys. J. 634, 625–640 (2005)

  5. 5.

    et al. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)

  6. 6.

    et al. The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. Astron. Astrophys. 507, 487–494 (2009)

  7. 7.

    et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006)

  8. 8.

    et al. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with a measured radius. Astron. Astrophys. 506, 287–302 (2009)

  9. 9.

    et al. The CoRoT-7 planetary system: two orbiting super-Earths. Astron. Astrophys. 506, 303–319 (2009)

  10. 10.

    & Design considerations for a ground-based transit search for habitable planets orbiting M dwarfs. Publ. Astron. Soc. Pacif. 120, 317–327 (2008)

  11. 11.

    et al. GJ 3236: A new bright, very low mass eclipsing binary system discovered by the MEarth Observatory. Astrophys. J. 701, 1436–1449 (2009)

  12. 12.

    Nearby stars from the LSPM-North Proper-Motion Catalog. I. main-sequence dwarfs and giants within 33 parsecs of the sun. Astron. J. 130, 1680–1692 (2005)

  13. 13.

    , & A trend filtering algorithm for wide-field variability surveys. Mon. Not. R. Astron. Soc. 356, 557–567 (2005)

  14. 14.

    , , & Survey for transiting extrasolar planets in stellar systems. III. A limit on the fraction of stars with planets in the open cluster NGC 1245. Astron. J. 132, 210–230 (2006)

  15. 15.

    et al. Kepler’s optical phase curve of the exoplanet HAT-P-7b. Science 325, 709 (2009)

  16. 16.

    , , & Mass–radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007)

  17. 17.

    , & A theory for the radius of the transiting giant planet HD 209458b. Astrophys. J. 594, 545–551 (2003)

  18. 18.

    , , & Evolutionary models for solar metallicity low-mass stars: mass–magnitude relationships and color–magnitude diagrams. Astron. Astrophys. 337, 403–412 (1998)

  19. 19.

    The transiting exoplanet host star GJ 436: a test of stellar evolution models in the lower main sequence, and revised planetary parameters. Astrophys. J. 671, L65–L68 (2007)

  20. 20.

    et al. Mass–radius relation of low and very low-mass stars revisited with the VLTI. Astron. Astrophys. 505, 205–215 (2009)

  21. 21.

    , , & The angular sizes of dwarf stars and subgiants. Surface brightness relations calibrated by interferometry. Astron. Astrophys. 426, 297–307 (2004)

  22. 22.

    , & Characterizing the near-UV environment of M dwarfs. Astrophys. J. 677, 593–606 (2008)

  23. 23.

    , & Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009)

  24. 24.

    , & The Palomar/MSU nearby-star spectroscopic survey. I. The northern M dwarfs—bandstrengths and kinematics. Astron. J. 110, 1838–1859 (1995)

  25. 25.

    , & The atmospheric signatures of super-Earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. Astrophys. J. 690, 1056–1067 (2009)

  26. 26.

    , & The General Catalogue of Trigonometric Stellar Parallaxes 4th edn (Yale Univ. Observatory, 1995)

  27. 27.

    et al. Accurate masses of very low mass stars. IV. Improved mass–luminosity relations. Astron. Astrophys. 364, 217–224 (2000)

  28. 28.

    et al. Spectral energy distributions for disk and halo M dwarfs. Astrophys. J. 535, 965–974 (2000)

  29. 29.

    & Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)

  30. 30.

    , & Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374, 733–739 (2001)

Download references

Acknowledgements

We thank M. Everett for gathering the FLWO 1.2-m observations, S. Seager for providing a digital version of the structural models, and D. Sasselov and S. Seager for comments on the manuscript. Support for this work was provided by the David and Lucile Packard Foundation Fellowship for Science and Engineering awarded to D.C., and by the US National Science Foundation under grant number AST-0807690. L.A.B. and D.W.L. acknowledge support from the NASA Kepler mission under cooperative agreement NCC2-1390. M.J.H. acknowledges support by NASA Origins Grant NNX09AB33G. The HARPS observations were gathered under the European Southern Observatory Director’s Discretionary Program 283.C-5022 (A). We thank the Smithsonian Astrophysical Observatory for supporting the MEarth Project at FLWO.

Author Contributions D.C., Z.K.B., J.I., C.J.B., P.N. and E.E.F. gathered and analysed the photometric data from the MEarth observatory, C.L., X.B., L.A.B., S.U., D.Q., F.P., M.M. and C.J.B. gathered and analysed the spectroscopic data from the HARPS instrument, and L.A.B., D.W.L., M.J.H., J.N.W. and P.N. gathered and analysed supplementary photometric and spectroscopic data with the 1.2-m and 1.5-m FLWO telescopes. R.A.M.-C. estimated the hydrodynamic escape rate, and X.B., X.D., T.F., J.I. and P.N. estimated the properties of the parent star. All authors discussed the results and commented on the manuscript. D.C. led the project and wrote the paper.

Author information

Affiliations

  1. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 USA

    • David Charbonneau
    • , Zachory K. Berta
    • , Jonathan Irwin
    • , Christopher J. Burke
    • , Philip Nutzman
    • , Lars A. Buchhave
    • , David W. Latham
    • , Ruth A. Murray-Clay
    • , Matthew J. Holman
    •  & Emilio E. Falco
  2. Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

    • Lars A. Buchhave
  3. Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland

    • Christophe Lovis
    • , Xavier Bonfils
    • , Stéphane Udry
    • , Didier Queloz
    • , Francesco Pepe
    •  & Michel Mayor
  4. Université Joseph Fourier – Grenoble 1, Centre national de la recherche scientifique, Laboratoire d’Astrophysique de Grenoble (LAOG), UMR 5571, 38041 Grenoble Cedex 09, France

    • Xavier Bonfils
    • , Xavier Delfosse
    •  & Thierry Forveille
  5. Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Joshua N. Winn

Authors

  1. Search for David Charbonneau in:

  2. Search for Zachory K. Berta in:

  3. Search for Jonathan Irwin in:

  4. Search for Christopher J. Burke in:

  5. Search for Philip Nutzman in:

  6. Search for Lars A. Buchhave in:

  7. Search for Christophe Lovis in:

  8. Search for Xavier Bonfils in:

  9. Search for David W. Latham in:

  10. Search for Stéphane Udry in:

  11. Search for Ruth A. Murray-Clay in:

  12. Search for Matthew J. Holman in:

  13. Search for Emilio E. Falco in:

  14. Search for Joshua N. Winn in:

  15. Search for Didier Queloz in:

  16. Search for Francesco Pepe in:

  17. Search for Michel Mayor in:

  18. Search for Xavier Delfosse in:

  19. Search for Thierry Forveille in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David Charbonneau.

Supplementary information

PDF files

  1. 1.

    Supplementary Tables

    This file contains Supplementary Table 2.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature08679

Further reading

  • Atmospheric Circulation of Tide-Locked Exoplanets

    • Raymond T. Pierrehumbert
    •  & Mark Hammond

    Annual Review of Fluid Mechanics (2019)

  • CARMENES input catalogue of M dwarfs

    • E. Díez Alonso
    • , J. A. Caballero
    • , D. Montes
    • , F. J. de Cos Juez
    • , S. Dreizler
    • , F. Dubois
    • , S. V. Jeffers
    • , S. Lalitha
    • , R. Naves
    • , A. Reiners
    • , I. Ribas
    • , S. Vanaverbeke
    • , P. J. Amado
    • , V. J. S. Béjar
    • , M. Cortés-Contreras
    • , E. Herrero
    • , D. Hidalgo
    • , M. Kürster
    • , L. Logie
    • , A. Quirrenbach
    • , S. Rau
    • , W. Seifert
    • , P. Schöfer
    •  & L. Tal-Or

    Astronomy & Astrophysics (2019)

  • Proxima Centauri b is not a transiting exoplanet

    • James S Jenkins
    • , Joseph Harrington
    • , Ryan C Challener
    • , Nicolás T Kurtovic
    • , Ricardo Ramirez
    • , Jose Peña
    • , Kathleen J McIntyre
    • , Michael D Himes
    • , Eloy Rodríguez
    • , Guillem Anglada-Escudé
    • , Stefan Dreizler
    • , Aviv Ofir
    • , Pablo A Peña Rojas
    • , Ignasi Ribas
    • , Patricio Rojo
    • , David Kipping
    • , R Paul Butler
    • , Pedro J Amado
    • , Cristina Rodríguez-López
    • , Eliza M-R Kempton
    • , Enric Palle
    •  & Felipe Murgas

    Monthly Notices of the Royal Astronomical Society (2019)

  • Temporal changes of the flare activity of Proxima Centauri

    • Ya. V. Pavlenko
    • , A. Suárez Mascareño
    • , M. R. Zapatero Osorio
    • , R. Rebolo
    • , N. Lodieu
    • , V. J. S. Béjar
    • , J. I. González Hernández
    •  & M. Mohorian

    Astronomy & Astrophysics (2019)

  • K2-288Bb: A Small Temperate Planet in a Low-mass Binary System Discovered by Citizen Scientists

    • Adina D. Feinstein
    • , Joshua E. Schlieder
    • , John H. Livingston
    • , David R. Ciardi
    • , Andrew W. Howard
    • , Lauren Arnold
    • , Geert Barentsen
    • , Makennah Bristow
    • , Jessie L. Christiansen
    • , Ian J. M. Crossfield
    • , Courtney D. Dressing
    • , Erica J. Gonzales
    • , Molly Kosiarek
    • , Chris J. Lintott
    • , Grant Miller
    • , Farisa Y. Morales
    • , Erik A. Petigura
    • , Beverly Thackeray
    • , Joanne Ault
    • , Elisabeth Baeten
    • , Alexander F. Jonkeren
    • , James Langley
    • , Houssen Moshinaly
    • , Kirk Pearson
    • , Christopher Tanner
    •  & Joanna Treasure

    The Astronomical Journal (2019)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.