Abstract
A decade ago, the detection of the first1,2 transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres3. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies4,5,6 and microlensing7 have uncovered a population of planets with minimum masses of 1.9–10 times the Earth’s mass (M⊕), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M⊕ and a radius 2.68 times Earth’s radius (R⊕), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen–helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a sun-like star. Astrophys. J. 529, L45–L48 (2000)
Henry, G. W., Marcy, G. W., Butler, R. P. & Vogt, S. S. A transiting ‘51-Peg-like’ planet. Astrophys. J. 529, L41–L44 (2000)
Charbonneau, D., Brown, T. M., Burrows, A. & Laughlin, G. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 701–716 (Univ. Arizona Press, 2007)
Rivera, E. J. et al. A ∼7.5 M ⊕ planet orbiting the nearby star, GJ 876. Astrophys. J. 634, 625–640 (2005)
Udry, S. et al. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M ⊕) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)
Mayor, M. et al. The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. Astron. Astrophys. 507, 487–494 (2009)
Beaulieu, J.-P. et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006)
Léger, A. et al. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with a measured radius. Astron. Astrophys. 506, 287–302 (2009)
Queloz, D. et al. The CoRoT-7 planetary system: two orbiting super-Earths. Astron. Astrophys. 506, 303–319 (2009)
Nutzman, P. & Charbonneau, D. Design considerations for a ground-based transit search for habitable planets orbiting M dwarfs. Publ. Astron. Soc. Pacif. 120, 317–327 (2008)
Irwin, J. et al. GJ 3236: A new bright, very low mass eclipsing binary system discovered by the MEarth Observatory. Astrophys. J. 701, 1436–1449 (2009)
Lépine, S. Nearby stars from the LSPM-North Proper-Motion Catalog. I. main-sequence dwarfs and giants within 33 parsecs of the sun. Astron. J. 130, 1680–1692 (2005)
Kovács, G., Bakos, G. & Noyes, R. W. A trend filtering algorithm for wide-field variability surveys. Mon. Not. R. Astron. Soc. 356, 557–567 (2005)
Burke, C. J., Gaudi, B. S., DePoy, D. L. & Pogge, R. W. Survey for transiting extrasolar planets in stellar systems. III. A limit on the fraction of stars with planets in the open cluster NGC 1245. Astron. J. 132, 210–230 (2006)
Borucki, W. J. et al. Kepler’s optical phase curve of the exoplanet HAT-P-7b. Science 325, 709 (2009)
Seager, S., Kuchner, M., Hier-Majumder, C. A. & Militzer, B. Mass–radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007)
Burrows, A., Sudarsky, D. & Hubbard, W. B. A theory for the radius of the transiting giant planet HD 209458b. Astrophys. J. 594, 545–551 (2003)
Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for solar metallicity low-mass stars: mass–magnitude relationships and color–magnitude diagrams. Astron. Astrophys. 337, 403–412 (1998)
Torres, G. The transiting exoplanet host star GJ 436: a test of stellar evolution models in the lower main sequence, and revised planetary parameters. Astrophys. J. 671, L65–L68 (2007)
Demory, B.-O. et al. Mass–radius relation of low and very low-mass stars revisited with the VLTI. Astron. Astrophys. 505, 205–215 (2009)
Kervella, P., Thévenin, F., Di Folco, E. & Ségransan, D. The angular sizes of dwarf stars and subgiants. Surface brightness relations calibrated by interferometry. Astron. Astrophys. 426, 297–307 (2004)
Walkowicz, L. M., Johns-Krull, C. M. & Hawley, S. L. Characterizing the near-UV environment of M dwarfs. Astrophys. J. 677, 593–606 (2008)
Murray-Clay, R. A., Chiang, E. I. & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009)
Reid, I. N., Hawley, S. L. & Gizis, J. E. The Palomar/MSU nearby-star spectroscopic survey. I. The northern M dwarfs—bandstrengths and kinematics. Astron. J. 110, 1838–1859 (1995)
Miller-Ricci, E., Seager, S. & Sasselov, D. The atmospheric signatures of super-Earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. Astrophys. J. 690, 1056–1067 (2009)
van Altena, W. F., Lee, J. T. & Hoffleit, E. D. The General Catalogue of Trigonometric Stellar Parallaxes 4th edn (Yale Univ. Observatory, 1995)
Delfosse, X. et al. Accurate masses of very low mass stars. IV. Improved mass–luminosity relations. Astron. Astrophys. 364, 217–224 (2000)
Leggett, S. K. et al. Spectral energy distributions for disk and halo M dwarfs. Astrophys. J. 535, 965–974 (2000)
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)
Bouchy, F., Pepe, F. & Queloz, D. Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374, 733–739 (2001)
Acknowledgements
We thank M. Everett for gathering the FLWO 1.2-m observations, S. Seager for providing a digital version of the structural models, and D. Sasselov and S. Seager for comments on the manuscript. Support for this work was provided by the David and Lucile Packard Foundation Fellowship for Science and Engineering awarded to D.C., and by the US National Science Foundation under grant number AST-0807690. L.A.B. and D.W.L. acknowledge support from the NASA Kepler mission under cooperative agreement NCC2-1390. M.J.H. acknowledges support by NASA Origins Grant NNX09AB33G. The HARPS observations were gathered under the European Southern Observatory Director’s Discretionary Program 283.C-5022 (A). We thank the Smithsonian Astrophysical Observatory for supporting the MEarth Project at FLWO.
Author Contributions D.C., Z.K.B., J.I., C.J.B., P.N. and E.E.F. gathered and analysed the photometric data from the MEarth observatory, C.L., X.B., L.A.B., S.U., D.Q., F.P., M.M. and C.J.B. gathered and analysed the spectroscopic data from the HARPS instrument, and L.A.B., D.W.L., M.J.H., J.N.W. and P.N. gathered and analysed supplementary photometric and spectroscopic data with the 1.2-m and 1.5-m FLWO telescopes. R.A.M.-C. estimated the hydrodynamic escape rate, and X.B., X.D., T.F., J.I. and P.N. estimated the properties of the parent star. All authors discussed the results and commented on the manuscript. D.C. led the project and wrote the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Tables
This file contains Supplementary Table 2. (PDF 49 kb)
Rights and permissions
About this article
Cite this article
Charbonneau, D., Berta, Z., Irwin, J. et al. A super-Earth transiting a nearby low-mass star. Nature 462, 891–894 (2009). https://doi.org/10.1038/nature08679
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature08679
This article is cited by
-
A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
Nature (2023)
-
Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets
Nature Astronomy (2021)
-
Tidal fragmentation as the origin of 1I/2017 U1 (‘Oumuamua)
Nature Astronomy (2020)
-
Atmospheric Characterization via Broadband Color Filters on the PLAnetary Transits and Oscillations of stars (PLATO) Mission
Experimental Astronomy (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.