Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila

This article has been updated


Aggression is regulated by pheromones in many animal species1,2,3. However, in no system have aggression pheromones, their cognate receptors and corresponding sensory neurons been identified. Here we show that 11-cis-vaccenyl acetate (cVA), a male-specific volatile pheromone, robustly promotes male–male aggression in the vinegar fly Drosophila melanogaster. The aggression-promoting effect of synthetic cVA requires olfactory sensory neurons (OSNs) expressing the receptor Or67d4,5,6, as well as the receptor itself. Activation of Or67d-expressing OSNs, either by genetic manipulation of their excitability or by exposure to male pheromones in the absence of other classes of OSNs, is sufficient to promote aggression. High densities of male flies can promote aggression by the release of volatile cVA. In turn, cVA-promoted aggression can promote male fly dispersal from a food resource, in a manner dependent on Or67d-expressing OSNs. These data indicate that cVA may mediate negative-feedback control of male population density, through its effect on aggression. Identification of a pheromone–OSN pair controlling aggression in a genetic organism opens the way to unravelling the neurobiology of this evolutionarily conserved behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthetic cVA promotes aggression.
Figure 2: Or67d-expressing OSNs mediate the aggression-promoting effect of synthetic cVA.
Figure 3: Or67d-expressing OSNs are sufficient to mediate the aggression-promoting effect of endogenously produced cVA.
Figure 4: cVA promotes aggression at high fly densities and dispersal of male flies from a food resource.

Change history

  • 14 January 2010

    The diameter in Fig. 4d was corrected from 50mm to 24mm on 14 January 2010.


  1. 1

    Shorey, H. H. Behavioral responses to insect pheromones. Annu. Rev. Entomol. 18, 349–380 (1973)

    CAS  Article  Google Scholar 

  2. 2

    Keverne, E. B. Mammalian pheromones: from genes to behaviour. Curr. Biol. 12, R807–R809 (2002)

    CAS  Article  Google Scholar 

  3. 3

    Chamero, P. et al. Identification of protein pheromones that promote aggressive behaviour. Nature 450, 899–902 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila . J. Neurosci. 26, 8727–8733 (2006)

    CAS  Article  Google Scholar 

  5. 5

    van der Goes van Naters, W. & Carlson, J. R. Receptors and neurons for fly odors in Drosophila . Curr. Biol. 17, 606–612 (2007)

    CAS  Article  Google Scholar 

  6. 6

    Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Sturtevant, A. H. Experiments on sex recognition and the problem of sexual selection in Drosophila . Anim. Behav. 5, 351–366 (1915)

    Article  Google Scholar 

  8. 8

    Chen, S., Lee, A. Y., Bowens, N. M., Huber, R. & Kravitz, E. A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl Acad. Sci. USA 99, 5664–5668 (2002)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Vrontou, E., Nilsen, S. P., Demir, E., Kravitz, E. A. & Dickson, B. J. fruitless regulates aggression and dominance in Drosophila . Nature Neurosci. 9, 1469–1471 (2006)

    CAS  Article  Google Scholar 

  10. 10

    Baier, A., Wittek, B. & Brembs, B. Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205, 1233–1240 (2002)

    PubMed  Google Scholar 

  11. 11

    Dierick, H. A. & Greenspan, R. J. Molecular analysis of flies selected for aggressive behavior. Nature Genet. 38, 1023–1031 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Dierick, H. A. & Greenspan, R. J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nature Genet. 39, 678–682 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Wang, L., Dankert, H., Perona, P. & Anderson, D. J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila . Proc. Natl Acad. Sci. USA 105, 5657–5663 (2008)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Hoyer, S. C. et al. Octopamine in male aggression of Drosophila . Curr. Biol. 18, 159–167 (2008)

    CAS  Article  Google Scholar 

  15. 15

    Zhou, C., Rao, Y. & Rao, Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neurosci. 11, 1059–1067 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Xu, P., Atkinson, R., Jones, D. N. M. & Smith, D. P. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45, 193–200 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Laughlin, J. D., Ha, T. S., Jones, D. N. M. & Smith, D. P. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133, 1255–1265 (2008)

    CAS  Article  Google Scholar 

  18. 18

    Bartelt, R. J., Schaner, A. M. & Jackson, L. L. cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster . J. Chem. Ecol. 11, 1747–1756 (1985)

    CAS  Article  Google Scholar 

  19. 19

    Ejima, A. et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr. Biol. 17, 599–605 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J. & Perona, P. Automated monitoring and analysis of social behavior in Drosophila . Nature Methods 6, 297–303 (2009)

    CAS  Article  Google Scholar 

  21. 21

    Certel, S. J., Savella, M. G., Schlegel, D. C. F. & Kravitz, E. A. Modulation of Drosophila male behavioral choice. Proc. Natl Acad. Sci. USA 104, 4706–4711 (2007)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Schlief, M. L. & Wilson, R. I. Olfactory processing and behavior downstream from highly selective receptor neurons. Nature Neurosci. 10, 623–630 (2007)

    CAS  Article  Google Scholar 

  26. 26

    Hoffmann, A. A. A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans . Anim. Behav. 35, 807–818 (1987)

    Article  Google Scholar 

  27. 27

    Benton, R. Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci. 30, 512–519 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Ono, M., Terabe, H., Hori, H. & Sasaki, M. Insect signalling: components of giant hornet alarm pheromone. Nature 424, 637–638 (2003)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Kou, R., Chen, S.-C., Chen, Y.-R. & Ho, H.-Y. 3-Hydroxy-2-butanone and the first encounter fight in the male lobster cockroach, Nauphoeta cinerea . Naturwissenschaften 93, 286–291 (2006)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Datta, S. R. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008)

    ADS  CAS  Article  Google Scholar 

Download references


We thank B. Dickson, M. Heisenberg and L. Vosshall for providing fly stocks, R. Axel, C. Bargmann, J. Levine and L. Vosshall for comments on the manuscript and L. Zipursky for discussions. This work was supported in part by NSF grants EF-0623527 and MCB-0418479. D.J.A. is an Investigator of the Howard Hughes Medical Institute.

Author Contributions L.W. carried out all the experiments and performed the data analysis. L.W. and D.J.A. together conceived the research and wrote the manuscript.

Author information



Corresponding authors

Correspondence to Liming Wang or David J. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3 with Legends. (PDF 139 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Anderson, D. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463, 227–231 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing