Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photon-induced near-field electron microscopy


In materials science and biology, optical near-field microscopies enable spatial resolutions beyond the diffraction limit1,2, but they cannot provide the atomic-scale imaging capabilities of electron microscopy3. Given the nature of interactions4,5,6,7,8 between electrons and photons, and considering their connections9,10 through nanostructures, it should be possible to achieve imaging of evanescent electromagnetic fields with electron pulses when such fields are resolved in both space (nanometre and below) and time (femtosecond)11,12,13. Here we report the development of photon-induced near-field electron microscopy (PINEM), and the associated phenomena. We show that the precise spatiotemporal overlap of femtosecond single-electron packets with intense optical pulses at a nanostructure (individual carbon nanotube or silver nanowire in this instance) results in the direct absorption of integer multiples of photon quanta (nω) by the relativistic electrons accelerated to 200 keV. By energy-filtering only those electrons resulting from this absorption, it is possible to image directly in space the near-field electric field distribution, obtain the temporal behaviour of the field on the femtosecond timescale, and map its spatial polarization dependence. We believe that the observation of the photon-induced near-field effect in ultrafast electron microscopy demonstrates the potential for many applications, including those of direct space-time imaging of localized fields at interfaces and visualization of phenomena related to photonics, plasmonics and nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron energy spectra of carbon nanotubes irradiated with an intense fs laser pulse at two different delay times.
Figure 2: Photon-induced near-field electron microscopy of an individual nanotube.
Figure 3: Temporal response and polarization dependence of the imaged interfacial fields.
Figure 4: Physical depiction of the interaction between the electron, photon and the evanescent field.

Similar content being viewed by others


  1. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  3. Spence, J. C. H. High-Resolution Electron Microscopy (Oxford Univ. Press, 2003)

    Google Scholar 

  4. Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Proc. Camb. Phil. Soc. 29, 297–300 (1933)

    Article  ADS  Google Scholar 

  5. Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza-Dirac effect. Nature 413, 142–143 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Bucksbaum, P. H., Schumacher, D. W. & Bashkansky, M. High-intensity Kapitza-Dirac effect. Phys. Rev. Lett. 61, 1182–1185 (1988)

    Article  ADS  CAS  Google Scholar 

  7. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

  8. Saathoff, G., Miaja-Avila, L., Aeschlimann, M., Murnane, M. M. & Kapteyn, H. C. Laser-assisted photoemission from surfaces. Phys. Rev. A 77, 022903 (2008)

    Article  ADS  Google Scholar 

  9. Howie, A. Electrons and photons: exploiting the connection. Inst. Phys. Conf. Ser. 161, 311–314 (1999)

    ADS  CAS  Google Scholar 

  10. García de Abajo, F. J. & Kociak, M. Electron energy-gain spectroscopy. N. J. Phys. 10, 073035 (2008)

    Article  Google Scholar 

  11. Barwick, B., Park, H. S., Kwon, O.-H., Baskin, J. S. & Zewail, A. H. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322, 1227–1231 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Carbone, F., Kwon, O.-H. & Zewail, A. H. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181–184 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Zewail, A. H. & Thomas, J. M. 4D Electron Microscopy: Imaging in Space and Time (Imperial College Press, 2009)

    Book  Google Scholar 

  14. Midgley, P. A., Saunders, M., Vincent, R. & Steeds, J. W. Energy-filtered convergent-beam diffraction: examples and future prospects. Ultramicroscopy 59, 1–13 (1995)

    Article  CAS  Google Scholar 

  15. Boersch, H., Geiger, J. & Stickel, W. Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration. Phys. Rev. Lett. 17, 379–381 (1966)

    Article  ADS  CAS  Google Scholar 

  16. Korte, K. E., Skrabalak, S. E. & Xia, Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2 polyol process. J. Mater. Chem. 18, 437–441 (2008)

    Article  CAS  Google Scholar 

  17. Park, H. S., Baskin, J. S., Kwon, O.-H. & Zewail, A. H. Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy. Nano Lett. 7, 2545–2551 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Dravid, V. P. et al. Buckytubes and derivatives: their growth and implications for buckyball formation. Science 259, 1601–1604 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Ishikawa, R., Bae, J. & Mizuno, K. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit. J. Appl. Phys. 89, 4065–4066 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Muller, H. G., van Linden van den Heuvell, H. B. & van der Wiel, M. J. Dressing of continuum states after MPI of Xe in a two-colour experiment. J. Phys. At. Mol. Opt. Phys. 19, L733–L739 (1986)

    Article  ADS  CAS  Google Scholar 

  21. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979)

    Article  ADS  CAS  Google Scholar 

  22. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Article  CAS  Google Scholar 

  24. Hamada, N., Sawada, S. & Oshiyama, A. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon. 3, 388–394 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Baum, P. & Zewail, A. Femtosecond diffraction with chirped electron pulses. Chem. Phys. Lett. 462, 14–17 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Humphreys, C. J. Understanding Materials (Maney Publishing, 2002)

    Google Scholar 

  29. Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Veisz, L. et al. Hybrid DC-AC electron gun for fs-electron pulse generation. N. J. Phys. 9, 451 (2007)

    Article  Google Scholar 

Download references


This work was supported by the National Science Foundation and the Air Force Office of Scientific Research in the Gordon and Betty Moore Center for Physical Biology at the California Institute of Technology. We thank S. Skrabalak for synthesizing and providing the silver nanowires.

Author Contributions All authors contributed extensively to the work presented in this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ahmed H. Zewail.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figure 1 with Legend. (PDF 293 kb)

Supplementary Movie 1

This is a movie of photon induced near-field electron microscopy of an individual carbon nanotube, slowed down by 1012 times because of the ultrafast time recording between frames. The individual frames are the energy-filtered UEM images acquired by using only the electrons that have gained energy. (MPG 947 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barwick, B., Flannigan, D. & Zewail, A. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing