Growth landscape formed by perception and import of glucose in yeast

Abstract

An important challenge in systems biology is to quantitatively describe microbial growth using a few measurable parameters that capture the essence of this complex phenomenon. Two key events at the cell membrane—extracellular glucose sensing and uptake—initiate the budding yeast’s growth on glucose. However, conventional growth models focus almost exclusively on glucose uptake. Here we present results from growth-rate experiments that cannot be explained by focusing on glucose uptake alone. By imposing a glucose uptake rate independent of the sensed extracellular glucose level, we show that despite increasing both the sensed glucose concentration and uptake rate, the cell’s growth rate can decrease or even approach zero. We resolve this puzzle by showing that the interaction between glucose perception and import, not their individual actions, determines the central features of growth, and characterize this interaction using a quantitative model. Disrupting this interaction by knocking out two key glucose sensors significantly changes the cell’s growth rate, yet uptake rates are unchanged. This is due to a decrease in burden that glucose perception places on the cells. Our work shows that glucose perception and import are separate and pivotal modules of yeast growth, the interaction of which can be precisely tuned and measured.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Growth rates of single- HXT strains do not show any systematic trend with respect to glucose concentration.
Figure 2: A rise in [glucose] produces an increase in the uptake rate, but cells do not necessarily grow faster.
Figure 3: Emergence of a concise growth model incorporating cell’s perception and uptake rate of glucose, and the resulting growth landscape.
Figure 4: Manipulation of the cell’s perception of extracellular glucose, leaving uptake rate unperturbed, can yield significant growth-rate changes.

References

  1. 1

    Monod, J. Recherches sur la Croissance des Cultures Bacteriennes (Hermann et Cie, 1942)

    Google Scholar 

  2. 2

    Bennett, M. R. et al. Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119–1122 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nature Genet. 36, 486–491 (2004)

    CAS  Article  Google Scholar 

  4. 4

    Airoldi, E. et al. Predicting cellular growth from gene expression signatures. PLoS Comp. Biol. 5, e1000257 (2009)

    Article  Google Scholar 

  5. 5

    Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Krishna, S., Semssey, S. & Sneppen, K. Combinatorics of feedback in cellular uptake and metabolism of small molecules. Proc. Natl Acad. Sci. USA 104, 20815–20819 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae . Nature Biotechnol. 22, 86–92 (2003)

    Article  Google Scholar 

  8. 8

    Famili, I., Forster, J., Nielsen, J. & Palsson, B. O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl Acad. Sci. USA 100, 13134–13139 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Bilu, Y., Shlomi, T., Barkai, N. & Ruppin, E. Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comp. Biol. 2, e106.

  10. 10

    Levine, E. & Hwa, T. Stochastic fluctuations in metabolic pathways. Proc. Natl Acad. Sci. USA 104, 9224–9229 (2007)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  11. 11

    Fell, D. A. Understanding the Control of Metabolism (Portland, 1997)

    Google Scholar 

  12. 12

    Savageau, M. A. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology (Addison-Wesely, 1976)

    Google Scholar 

  13. 13

    Goyal, S. & Wingreen, N. S. Growth-induced instability in metabolic networks. Phys. Rev. Lett. 98, 138105 (2007)

    ADS  Article  Google Scholar 

  14. 14

    Nielsen, J., Villadsen, J. & Liden, G. Bioreaction Engineering Principles 235–311 (Springer, 2003)

    Google Scholar 

  15. 15

    Dickinson, J. R. & Schweizer, M. The Metabolism and Molecular Physiology of Saccharomyces cerevisiae (CRC, 2004)

    Google Scholar 

  16. 16

    Alon, U. Simplicity in biology. Nature 446, 497 (2007)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Mallavarapu, A., Thomson, M., Ullian, B. & Gunawardena, J. Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface 6, 257–270 (2009)

    CAS  Article  Google Scholar 

  18. 18

    Moriya, H. & Johnston, M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl Acad. Sci. USA 101, 1572–1577 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Boles, E. & Hollenberg, C. P. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85–111 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Reifenberger, E., Freidel, K. & Ciriacy, M. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 16, 157–167 (1995)

    CAS  Article  Google Scholar 

  21. 21

    Bisson, L. F., Coons, D. M., Kruckeberg, A. L. & Lewis, D. A. Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol. 28, 259–308 (1993)

    CAS  Article  Google Scholar 

  22. 22

    Ozcan, S. & Johnston, M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Microbiol. Mol. Biol. Rev. 63, 554–569 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Pao, S. S., Paulsen, I. T. & Saier, M. H. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wieczorke, R. et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae . FEBS Lett. 464, 123–128 (1999)

    CAS  Article  Google Scholar 

  25. 25

    Reifenberger, E., Boles, E. & Ciriacy, M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Eur. J. Biochem. 245, 324–333 (1997)

    CAS  Article  Google Scholar 

  26. 26

    Maier, A., Volker, B., Boles, E. & Fuhrmann, G. F. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2, 539–550 (2002)

    CAS  PubMed  Google Scholar 

  27. 27

    Walsh, M. C., Scholte, M., Valkier, J., Smits, H. P. & van Dam, K. Glucose sensing and signaling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J. Bacteriol. 170, 2593–2597 (1996)

    Article  Google Scholar 

  28. 28

    Jiang, Y., Davis, C. & Broach, J. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J. 17, 6942–6951 (1998)

    CAS  Article  Google Scholar 

  29. 29

    Boer, V. M., Amini, S. & Botstein, D. Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc. Natl Acad. Sci. USA 105, 6930–6935 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    van Hoek, P., van Dijken, J. & Pronk, J. Effects of specific growth rate on fermentative capacity of baker’s yeast. Appl. Environ. Microbiol. 64, 4226–4233 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Reijenga, K. A. et al. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae . Biophys. J. 80, 626–634 (2001)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Kaniak, A., Xue, Z., Macool, D., Kim, J. H. & Johnston, M. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae . Eukaryot. Cell 3, 221–231 (2004)

    CAS  Article  Google Scholar 

  33. 33

    Gancedo, J. M. The early steps of glucose signaling in yeast. FEMS Microbiol. Rev. 32, 673–704 (2008)

    CAS  Article  Google Scholar 

  34. 34

    Kim, J. H. & Johnston, M. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevsiae . J. Biol. Chem. 281, 26144–26149 (2006)

    CAS  Article  Google Scholar 

  35. 35

    Santangelo, G. M. Glucose signaling in Saccharomyces cerevisiae . Microbiol. Mol. Biol. Rev. 70, 253–282 (2006)

    CAS  Article  Google Scholar 

  36. 36

    Levy, S. et al. Strategy of transcription regulation in the budding yeast. PLoS One 2, e250 (2007)

    ADS  Article  Google Scholar 

  37. 37

    Yin, Z. et al. Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol. Microbiol. 48, 713–724 (2003)

    CAS  Article  Google Scholar 

  38. 38

    Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Lorenz, D. R., Cantor, C. R. & Collins, J. J. A network biology approach to aging in yeast. Proc. Natl Acad. Sci. USA 106, 1145–1150 (2009)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Ostergaard, S., Olsson, L. & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae . Microbiol. Mol. Biol. Rev. 64, 34–50 (2000)

    CAS  Article  Google Scholar 

  41. 41

    Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004)

    CAS  Article  Google Scholar 

  42. 42

    Savageau, M. A., Coelho, P., Fasani, R., Tolla, D. & Salvador, A. Phenotypes and tolerances in the design space of biochemical systems. Proc. Natl Acad. Sci. USA 106, 6435–6440 (2009)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309, 938–940 (2005)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Klumpp, S. & Hwa, T. Growth-rate-dependent partitioning of RNA polymerases in bacteria. Proc. Natl Acad. Sci. USA 105, 20245–20250 (2008)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Duarte, N. C., Palsson, B., Ø & Fu, P. Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae . BMC Genomics 5, 63 (2004)

  46. 46

    Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in Saccharomyces cereivisiae are predominantly regulated at posttranscriptional levels. Proc. Natl Acad. Sci. USA 104, 15753–15758 (2007)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Castrillo, J. I. et al. Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6, 4 (2007)

    Article  Google Scholar 

  48. 48

    Stelling, J. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513–518 (2004)

    Article  Google Scholar 

  49. 49

    Sheff, M. & Thorn, K. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae . Yeast 21, 661–670 (2004)

    CAS  Article  Google Scholar 

  50. 50

    Kim, J. H., Polish, J. & Johnston, M. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol. Cell. Biol. 23, 5208–5216 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Boles for the kind gift of strains. We also thank D. Botstein, D. Muzzey, J. Gore and S. Rifkin for critical reading of our manuscript and useful discussions. This work was funded by a National Institutes of Health (NIH) Director’s Pioneer awarded to A.v.O., and grants from the NIH and National Science Foundation (NSF). H.Y. was supported by the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Graduate Fellowship.

Author Contributions H.Y. performed the experiments. H.Y. and A.v.O. designed experiments, analysed data and wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander van Oudenaarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Figures 1-17 with Legends, Supplementary References and a Supplementary Chart of the Strains used in this study. (PDF 4418 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Youk, H., van Oudenaarden, A. Growth landscape formed by perception and import of glucose in yeast. Nature 462, 875–879 (2009). https://doi.org/10.1038/nature08653

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.