Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra

Abstract

All hard, convex shapes are conjectured by Ulam to pack more densely than spheres1, which have a maximum packing fraction of φ = π/√18 ≈ 0.7405. Simple lattice packings of many shapes easily surpass this packing fraction2,3. For regular tetrahedra, this conjecture was shown to be true only very recently; an ordered arrangement was obtained via geometric construction with φ = 0.7786 (ref. 4), which was subsequently compressed numerically to φ = 0.7820 (ref. 5), while compressing with different initial conditions led to φ = 0.8230 (ref. 6). Here we show that tetrahedra pack even more densely, and in a completely unexpected way. Following a conceptually different approach, using thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, we observe that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal7,8,9,10, which can be compressed to a packing fraction of φ = 0.8324. By compressing a crystalline approximant of the quasicrystal, the highest packing fraction we obtain is φ = 0.8503. If quasicrystal formation is suppressed, the system remains disordered, jams and compresses to φ = 0.7858. Jamming and crystallization are both preceded by an entropy-driven transition from a simple fluid of independent tetrahedra to a complex fluid characterized by tetrahedra arranged in densely packed local motifs of pentagonal dipyramids that form a percolating network at the transition. The quasicrystal that we report represents the first example of a quasicrystal formed from hard or non-spherical particles. Our results demonstrate that particle shape and entropy can produce highly complex, ordered structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Packings of tetrahedra obtained by hand and by computer simulation.
Figure 2: Thermodynamic and structural properties of the hard tetrahedron fluid.
Figure 3: Structural characterization of the hard tetrahedra dodecagonal quasicrystal and its approximant.

Similar content being viewed by others

References

  1. Gardner, M. The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and Problems 135 (Norton, 2001)

    Google Scholar 

  2. Betke, U. & Henk, M. Densest lattice packings of 3-polytopes. Comput. Geom. 16, 157–186 (2000)

    Article  MathSciNet  Google Scholar 

  3. Donev, A., Stillinger, F. H., Chaikin, P. M. & Torquato, S. Unusually dense crystal packing of ellipsoids. Phys. Rev. Lett. 92, 255506 (2004)

    Article  ADS  Google Scholar 

  4. Chen, E. R. A dense packing of regular tetrahedra. Discrete Comput. Geom. 40, 214–240 (2008)

    Article  MathSciNet  Google Scholar 

  5. Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Torquato, S. & Jiao, Y. Dense packings of polyhedra: Platonic and Archimedean solids. Phys. Rev. E 80, 041104 (2009)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007)

    Article  ADS  Google Scholar 

  9. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Conrad, M., Krumeich, F. & Harbrecht, B. A dodecagonal quasicrystalline chalcogenide. Angew. Chem. Int. Ed. 37, 1384–1386 (1998)

    CAS  Google Scholar 

  11. Hales, T. C. Historical overview of the Kepler conjecture. Discrete Comput. Geom. 36, 5–20 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  Google Scholar 

  13. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 567–572 (2007)

    Article  Google Scholar 

  14. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Spontaneous self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Onsager, L. The effect of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949)

    Article  ADS  CAS  Google Scholar 

  16. Kirkwood, J. E. in Phase Transformations in Solids (eds Smoluchowski, R., Mayer, J. E. & Weyl, W. A.) 67 (Wiley, 1951)

    Google Scholar 

  17. Bolhuis, P. & Frenkel, D. J. Tracing the phase boundaries of hard spherocylinders. J. Chem. Phys. 106, 666–687 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Camp, P. J. & Allen, M. P. Phase diagram of the hard biaxial ellipsoid fluid. J. Chem. Phys. 106, 6681–6688 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Veerman, J. A. C. & Frenkel, D. Phase-behavior of disk-like hard-core mesogens. Phys. Rev. A 45, 5632–5648 (1992)

    Article  ADS  CAS  Google Scholar 

  20. John, B. S., Juhlin, C. & Escobedo, F. A. Phase behavior in colloidal hard perfect tetragonal parallelepipeds. J. Chem. Phys. 128, 044909 (2009)

    Article  ADS  Google Scholar 

  21. Conway, J. H. & Torquato, S. Packing, tiling and covering with tetrahedra. Proc. Natl Acad. Sci. USA 103, 10612–10617 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Kolafa, J. & Nezbeda, I. The hard tetrahedron fluid: a model for the structure of water. Mol. Phys. 84, 421–434 (1994)

    Article  ADS  Google Scholar 

  23. Frank, F. C. & Kasper, J. S. Complex alloy structures regarded as sphere packings. 1. Definitions and basic principles. Acta Crystallogr. 11, 184–190 (1958)

    Article  CAS  Google Scholar 

  24. Fel, L. G. Tetrahedral symmetry in nematic liquid crystals. Phys. Rev. E 52, 702–717 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Yamamoto, A. Crystallography of quasiperiodic crystals. Acta Crystallogr. A 52, 509–560 (1996)

    Article  Google Scholar 

  26. Oxborrow, M. & Henley, C. L. Random square-triangle tilings—a model for twelvefold-symmetrical quasi-crystals. Phys. Rev. B 48, 6966–6998 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Roth, J. & Denton, A. R. Solid-phase structures of the Dzugutov pair potential. Phys. Rev. E 61, 6845–6857 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Keys, A. S. & Glotzer, S. C. How do quasicrystals grow? Phys. Rev. Lett. 99, 235503 (2007)

    Article  ADS  Google Scholar 

  29. Mikhael, J., Roth, J., Helden, L. & Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Steurer, W. Structural phase transitions from and to the quasicrystalline state. Acta Crystallogr. A 61, 28–38 (2005)

    Article  ADS  Google Scholar 

  31. Engel, M. & Trebin, H.-R. Self-assembly of complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 98, 225505 (2007)

    Article  ADS  Google Scholar 

  32. Kallus, Y., Elser, V. & Gravel, S. A dense periodic packing of tetrahedra with a small repeating unit. Preprint at 〈http://arxiv.org/abs/0910.5226〉 (2009)

Download references

Acknowledgements

The Air Force Office of Scientific Research supported A.H.-A., P.P.-M. and S.C.G. The National Science Foundation supported A.S.K., A.H.-A. and S.C.G. in the shape-matching analyses that identified local motifs. M.E. was supported by a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft.

Author Contributions A.H.-A. and M.E. performed all simulations and contributed equally to the study. M.E. solved the quasicrystal and approximant structures. A.S.K. performed shape-matching analysis. X.Z., P.P.-M., and R.G.P. proposed and constructed geometric packings. All authors discussed and analysed the results, and contributed to the scientific process. S.C.G., A.H.-A., and M.E. wrote most of the paper, and all authors contributed to refinement of the manuscript. S.C.G. and P.P.-M. conceived and designed the study, and S.C.G. directed the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon C. Glotzer.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S8 with Legends and Supplementary Notes and Data. (PDF 4467 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haji-Akbari, A., Engel, M., Keys, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009). https://doi.org/10.1038/nature08641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08641

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing