Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of molecular orbital gating


The control of charge transport in an active electronic device depends intimately on the modulation of the internal charge density by an external node1. For example, a field-effect transistor relies on the gated electrostatic modulation of the channel charge produced by changing the relative position of the conduction and valence bands with respect to the electrodes. In molecular-scale devices2,3,4,5,6,7,8,9,10, a longstanding challenge has been to create a true three-terminal device that operates in this manner (that is, by modifying orbital energy). Here we report the observation of such a solid-state molecular device, in which transport current is directly modulated by an external gate voltage. Resonance-enhanced coupling to the nearest molecular orbital is revealed by electron tunnelling spectroscopy, demonstrating direct molecular orbital gating in an electronic device. Our findings demonstrate that true molecular transistors can be created, and so enhance the prospects for molecularly engineered electronic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Gate-controlled charge transport characteristics of a Au-ODT-Au junction.
Figure 2: Gate-controlled charge transport characteristics of a Au-BDT-Au junction.
Figure 3: Gated IET spectra and linewidth broadening of a Au-ODT-Au junction.
Figure 4: Resonantly enhanced IET spectra of a Au-BDT-Au junction.


  1. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Galperin, M., Ratner, M. A., Nitzan, A. & Troisi, A. Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319, 1056–1060 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997)

    Article  CAS  Google Scholar 

  5. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  ADS  CAS  Google Scholar 

  6. Ghosh, A. W., Rakshit, T. & Datta, S. Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4, 565–568 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Andrews, D. Q., Solomon, G. C., Van Duyne, R. P. & Ratner, M. A. Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008)

    Article  CAS  Google Scholar 

  8. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Xu, B., Xiao, X., Yang, X., Zang, L. & Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005)

    Article  CAS  Google Scholar 

  12. Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Datta, S. S., Strachan, D. R. & Johnson, A. T. C. Gate coupling to nanoscale electronics. Phys. Rev. B 79, 205404 (2009)

    Article  ADS  Google Scholar 

  14. Ghosh, S. et al. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 87, 233509 (2005)

    Article  ADS  Google Scholar 

  15. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003)

    Article  ADS  Google Scholar 

  18. Beebe, J. M., Kim, B., Gadzuk, J. W., Frisbie, C. D. & Kushmerick, J. G. Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006)

    Article  ADS  Google Scholar 

  19. Jaklevic, R. C. & Lambe, J. Molecular vibration spectra by electron tunneling. Phys. Rev. Lett. 17, 1139–1140 (1966)

    Article  ADS  CAS  Google Scholar 

  20. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Wang, W., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Galperin, M., Ratner, M. A. & Nitzan, A. On the line widths of vibrational features in inelastic electron tunneling spectroscopy. Nano Lett. 4, 1605–1611 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Shimazaki, T. & Asai, Y. Theoretical study of the lineshape of inelastic electron tunneling spectroscopy. Phys. Rev. B 77, 115428 (2008)

    Article  ADS  Google Scholar 

  25. Troisi, A., Ratner, M. A. & Nitzan, A. Vibronic effects in off-resonant molecular wire conduction. J. Chem. Phys. 118, 6072–6082 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Galperin, M., Ratner, M. A. & Nitzan, A. Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J. Chem. Phys. 121, 11965–11979 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Persson, B. N. J. & Baratoff, A. Inelastic electron tunneling from a metal tip: the contribution from resonant processes. Phys. Rev. Lett. 59, 339–342 (1987)

    Article  ADS  CAS  Google Scholar 

  28. Komeda, T. Chemical identification and manipulation of molecules by vibrational excitation via inelastic tunneling process with scanning tunneling microscopy. Prog. Surf. Sci. 78, 41–85 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Yu, L. H., Zangmeister, C. D. & Kushmerick, J. G. Origin of discrepancies in inelastic electron tunneling spectra of molecular junctions. Phys. Rev. Lett. 98, 206803 (2007)

    Article  ADS  Google Scholar 

  30. Troisi, A. & Ratner, M. A. Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions. J. Chem. Phys. 125, 214709 (2006)

    Article  ADS  Google Scholar 

Download references


This work was supported by the Korean National Research Laboratory programme; a Korean National Core Research Center grant; the World Class University programme of the Korean Ministry of Education, Science and Technology; the Program for Integrated Molecular System at the Gwangju Institute of Science and Technology; the SystemIC2010 project of the Korean Ministry of Knowledge Economy; the US Army Research Office (W911NF-08-1-0365); and the Canadian Institute for Advanced Research.

Author Contributions T.L. planned and supervised the project; H.S. designed and performed the experiments; H.S., T.L. and M.A.R. analysed and interpreted the data and wrote the manuscript; H.J. designed the electrical measurement systems; Y.K. assisted in low-temperature electrical measurements; and Y.H.J. performed DFT calculations.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Mark A. Reed or Takhee Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures S1-S10 with Legends, Supplementary Notes and Data, Supplementary Table S1 and Supplementary References. (PDF 800 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, H., Kim, Y., Jang, Y. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing