Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A lower limit of 50 microgauss for the magnetic field near the Galactic Centre


The amplitude of the magnetic field near the Galactic Centre has been uncertain by two orders of magnitude for several decades. On a scale of 100 parsecs (pc), fields of 1,000 microgauss (μG; refs 1–3) have been reported, implying a magnetic energy density more than 10,000 times stronger than typical for the Galaxy. Alternatively, the assumption of pressure equilibrium between the various phases of the Galactic Centre interstellar medium (including turbulent molecular gas, the contested4 ‘very hot’ plasma, and the magnetic field) suggests fields of 100 μG over 400 pc size scales5. Finally, assuming equipartition, fields of only 6 μG have been inferred from radio observations6 for 400 pc scales. Here we report a compilation of previous data that reveals a downward break in the region's non-thermal radio spectrum (attributable to a transition from bremsstrahlung to synchrotron cooling of the in situ cosmic-ray electron population). We show that the spectral break requires that the Galactic Centre field be at least 50 μG on 400 pc scales, lest the synchrotron-emitting electrons produce too much γ-ray emission, given other existing constraints7. Other considerations support a field of 100 μG, implying that over 10% of the Galaxy's magnetic energy is contained in only 0.05% of its volume.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Total intensity image of the region at 10 GHz.
Figure 2: Spectrum of the region: data and models.
Figure 3: Plot of the χ 2 per degree of freedom as a function of magnetic field amplitude.
Figure 4: Energy density, U X, in phase ‘X’ of the Galactic Centre interstellar medium as a function of magnetic field.


  1. Yusef-Zadeh, F. & Morris, M. G0.18–0.04 — Interaction of thermal and nonthermal radio structures in the arc near the galactic center. Astron. J. 94, 1178–1184 (1987)

    Article  ADS  Google Scholar 

  2. Morris, M. & Yusef-Zadeh, F. The thermal, arched filaments of the radio arc near the Galactic center — magnetohydrodynamic-induced ionization? Astrophys. J. 343, 703–712 (1989)

    Article  ADS  Google Scholar 

  3. Morris, M. The Galactic centre magnetosphere. Preprint at 〈〉 (2007)

  4. Revnivtsev, M. et al. Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 458, 1142–1144 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Spergel, D. N. & Blitz, L. Extreme gas pressures in the Galactic bulge. Nature 357, 665–667 (1992)

    Article  ADS  Google Scholar 

  6. LaRosa, T. N. et al. Evidence of a weak Galactic Centre magnetic field from diffuse low-frequency nonthermal radio emission. Astrophys. J. 626, L23–L27 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Hunter, S. D. et al. EGRET observations of the diffuse gamma-ray emission from the Galactic plane. Astrophys. J. 481, 205–240 (1997)

    Article  ADS  CAS  Google Scholar 

  8. F. A. et al. Discovery of very-high-energy γ-rays from the Galactic Centre ridge. Nature 439, 695–698 (2006)

  9. Wommer, E., Melia, F. & Fatuzzo, M. Diffuse TeV emission at the Galactic Centre. Mon. Not. R. Astron. Soc. 387, 987–997 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Reich, W., Reich, P. & Fuerst, E. The Effelsberg 21 cm radio continuum survey of the Galactic plane between L = 357 deg and L = 95.5 deg. Astron. Astrophys. 83 (Suppl.). 539–568 (1990)

    ADS  Google Scholar 

  11. Reich, W., Fuerst, E., Steffen, P., Reif, K. & Haslam, C. G. T. A radio continuum survey of the Galactic Plane at 11 cm wavelength. I — The area L = 357.4 to 76 deg, B = -1.5 to +1.5 deg. Astron. Astrophys. 58 (Suppl.). 197–248 (1984)

    ADS  Google Scholar 

  12. Duncan, A. R. et al. A deep radio continuum survey of the southern Galactic plane at 2.4 GHz. Mon. Not. R. Astron. Soc. 277, 36–52 (1995)

    ADS  Google Scholar 

  13. Handa, T. et al. A radio continuum survey of the Galactic plane at 10 GHz. Proc. Astron. Soc. Jpn 39, 709–753 (1987)

    ADS  Google Scholar 

  14. Porter, T. A., Moskalenko, I. V. & Strong, A. W. Inverse Compton emission from galactic supernova remnants: effect of the interstellar radiation field. Astrophys. J. 648, L29–L32 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Atwood, W. B. et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 697, 1071–1102 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Koyama, K., Awaki, H., Kunieda, H., Takano, S. & Tawara, Y. Intense 6.7-keV iron line emission from the Galactic Centre. Nature 339, 603–605 (1989)

    Article  ADS  CAS  Google Scholar 

  17. Thompson, T. A., Quataert, E., Waxman, E., Murray, N. & Martin, C. L. Magnetic fields in starburst galaxies and the origin of the FIR-radio correlation. Astrophys. J. 645, 186–198 (2006)

    Article  ADS  Google Scholar 

  18. Voelk, H. J. The correlation between radio and far infrared emission for disk galaxies: a calorimeter theory. Astron. Astrophys. 218, 67–70 (1989)

    ADS  Google Scholar 

  19. Yun, M. S., Reddy, N. A. & Condon, J. J. Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys. J. 554, 803–822 (2001)

    Article  ADS  Google Scholar 

  20. Parker, E. N. The dynamical state of the interstellar gas and field. Astrophys. J. 145, 811–833 (1966)

    Article  ADS  Google Scholar 

  21. Fukui, Y. et al. Molecular loops in the Galactic Center: evidence for magnetic flotation. Science 314, 106–109 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Crocker, R. M. et al. The cosmic ray distribution in Sagittarius B. Astrophys. J. 666, 934–948 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Yamauchi, S. et al. Optically thin hot plasma near the Galactic center — Mapping observations of the 6.7 keV iron line. Astrophys. J. 365, 532–538 (1990)

    Article  ADS  CAS  Google Scholar 

  24. Güsten, R. & Philipp, S. D. in Proc. 4th Cologne-Bonn-Zermatt Symp. (eds Pfalzner, S., Kramer, C., Staubmeier, C. & Heithausen, A.) 253–263 (Springer Proceedings in Physics, Vol. 91, Springer, 2004)

    Google Scholar 

  25. Paglione, T. A. D., Jackson, J. M., Bolatto, A. D. & Heyer, M. H. Interpreting the HCN/CO intensity ratio in the Galactic Centre. Astrophys. J. 493, 680–693 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Ferrière, K., Gillard, W. & Jean, P. Spatial distribution of interstellar gas in the innermost 3 kpc of our galaxy. Astron. Astrophys. 467, 611–627 (2007)

    Article  ADS  Google Scholar 

Download references


R.M.C. thanks T. Porter for conversations about the Galactic Centre interstellar radiation field. D.I.J. thanks Monash University for hospitality. R.M.C. and D.I.J. thank J. Dickey for advice about radio data analysis. J.O. is a Jansky Fellow at NRAO; R.M.C. is a J. L. William Fellow at Monash University and a Marie Curie Fellow at Max-Planck-Institut für Kernphysik.

Author Contributions R.M.C. led the work and performed the main analysis. D.I.J. performed the analysis of radio data, including development of the Fourier-based technique for background and foreground removal, was responsible for original radio observations, and provided critical scientific discussion. F.M. provided input on theoretical and statistical problems, and critical discussion of scientific interpretation. J.O. supervised the analysis of archival radio data and the taking of original radio data, and provided input on statistics. R.J.P. provided input on thermal and relevant non-thermal processes and critical discussion of scientific interpretation. R.J.P. and R.M.C. provided supervision of D.I.J. as doctoral candidate. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Roland M. Crocker.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Methods, Supplementary Table 1, Supplementary Figures S1-S8 with Legends, Supplementary Data and Supplementary References. (PDF 1768 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crocker, R., Jones, D., Melia, F. et al. A lower limit of 50 microgauss for the magnetic field near the Galactic Centre. Nature 463, 65–67 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing