Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic magnetic fields for ultracold neutral atoms

Abstract

Neutral atomic Bose condensates and degenerate Fermi gases have been used to realize important many-body phenomena in their most simple and essential forms1,2,3, without many of the complexities usually associated with material systems. However, the charge neutrality of these systems presents an apparent limitation—a wide range of intriguing phenomena arise from the Lorentz force for charged particles in a magnetic field, such as the fractional quantum Hall effect in two-dimensional electron systems4,5. The limitation can be circumvented by exploiting the equivalence of the Lorentz force and the Coriolis force to create synthetic magnetic fields in rotating neutral systems. This was demonstrated by the appearance of quantized vortices in pioneering experiments6,7,8,9 on rotating quantum gases, a hallmark of superfluids or superconductors in a magnetic field. However, because of technical issues limiting the maximum rotation velocity, the metastable nature of the rotating state and the difficulty of applying stable rotating optical lattices, rotational approaches are not able to reach the large fields required for quantum Hall physics10,11,12. Here we experimentally realize an optically synthesized magnetic field for ultracold neutral atoms, which is evident from the appearance of vortices in our Bose–Einstein condensate. Our approach uses a spatially dependent optical coupling between internal states of the atoms, yielding a Berry’s phase13 sufficient to create large synthetic magnetic fields, and is not subject to the limitations of rotating systems. With a suitable lattice configuration, it should be possible to reach the quantum Hall regime, potentially enabling studies of topological quantum computation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experiment summary for synthesizing magnetic fields.
Figure 2: Appearance of vortices at different detuning gradients.
Figure 3: Vortex formation.
Figure 4: Equilibrium vortex number.

References

  1. 1

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2003)

    ADS  Article  Google Scholar 

  2. 2

    Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    ADS  Article  Google Scholar 

  6. 6

    Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P. & Cornell, E. A. Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Juzeliūnas, G. & Öhberg, P. Slow light in degenerate Fermi gases. Phys. Rev. Lett. 93, 033602 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. N. J. Phys. 5, 56.1–56.11 (2003)

    Article  Google Scholar 

  12. 12

    Sorensen, A. S., Demler, E. & Lukin, M. D. Fractional quantum Hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005)

    ADS  Article  Google Scholar 

  13. 13

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Juzeliūnas, G., Ruseckas, J., Öhberg, P. & Fleischhauer, M. Light-induced effective magnetic fields for ultracold atoms in planar geometries. Phys. Rev. A 73, 025602 (2006)

    ADS  Article  Google Scholar 

  15. 15

    Gunter, K. J., Cheneau, M., Yefsah, T., Rath, S. P. & Dalibard, J. Practical scheme for a light-induced gauge field in an atomic Bose gas. Phys. Rev. A 79, 011604 (2009)

    ADS  Article  Google Scholar 

  16. 16

    Spielman, I. B. Raman processes and effective gauge potentials. Phys. Rev. A 79, 063613 (2009)

    ADS  Article  Google Scholar 

  17. 17

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  18. 18

    Radu, I. P. et al. Quasi-particle properties from tunneling in the formula fractional quantum Hall state. Science 320, 899–902 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Cheneau, M. et al. Geometric potentials in quantum optics: A semi-classical interpretation. Europhys Lett. 83, 60001 (2008)

    ADS  Article  Google Scholar 

  21. 21

    Leanhardt, A. E. et al. Imprinting vortices in a Bose-Einstein condensate using topological phases. Phys. Rev. Lett. 89, 190403 (2002)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Andersen, M. F. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Matthews, M. R. et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Lin, Y.-J. et al. Bose-Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett. 102, 130401 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Lundh, E., Pethick, C. J. & Smith, H. Zero-temperature properties of a trapped Bose-condensed gas: beyond the Thomas-Fermi approximation. Phys. Rev. A 55, 2126–2131 (1997)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Murray, D. R., Öhberg, P., Gomila, D. & Barnett, S. M. Vortex nucleation in Bose-Einstein condensates due to effective magnetic fields. Phys. Rev. A 79, 063618 (2009)

    ADS  Article  Google Scholar 

  28. 28

    Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Lin, Y.-J., Perry, A. R., Compton, R. L., Spielman, I. B. & Porto, J. V. Rapid production of 87 Rb Bose-Einstein condensates in a combined magnetic and optical potential. Phys. Rev. A 79, 063631 (2009)

    ADS  Article  Google Scholar 

  30. 30

    Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J. & Gardiner, C. W. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank W. D. Phillips for discussions. This work was partially supported by ONR, ARO with funds from the DARPA OLE programme, and the NSF through the JQI Physics Frontier Center. R.L.C. acknowledges the NIST/NRC postdoctoral programme and K.J.-G. thanks CONACYT.

Author Contributions All authors contributed to writing of the manuscript. Y.-J.L. led the data collection effort (with assistance from R.L.C. and K.J.-G.). I.B.S. and J.V.P. designed the original apparatus, which was largely constructed by I.B.S., and Y.-J.L. implemented the specific changes required for the present experiment. I.B.S. conceived the experiment and performed numerical and analytic calculations. This work was supervised by I.B.S. with consultations from J.V.P.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. B. Spielman.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, YJ., Compton, R., Jiménez-García, K. et al. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009). https://doi.org/10.1038/nature08609

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing