Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drivers of biodiagnostic development

Abstract

The promise of point-of-care medical diagnostics — tests that can be carried out at the site of patient care — is enormous, bringing the benefits of fast and reliable testing and allowing rapid decisions on the course of treatment to be made. To this end, much innovation is occurring in technologies for use in biodiagnostic tests. Assays based on nanomaterials, for example, are now beginning to make the transition from the laboratory to the clinic. But the potential for such assays to become part of routine medical testing depends on many scientific factors, including sensitivity, selectivity and versatility, as well as technological, financial and policy factors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: High-sensitivity detection can allow less invasive disease diagnosis: Alzheimer's disease example.

References

  1. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    CAS  Article  Google Scholar 

  2. Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).

    CAS  Article  Google Scholar 

  3. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005). This review highlights how nanomaterials contribute to diagnostics.

    CAS  Article  Google Scholar 

  4. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    CAS  Article  Google Scholar 

  5. Taton, T. A., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    ADS  CAS  Article  Google Scholar 

  6. Nam, J. M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    ADS  CAS  Article  Google Scholar 

  7. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    CAS  Article  Google Scholar 

  8. You, C.-C. et al. Detection and identification of proteins using nanoparticle–fluorescent polymer 'chemical nose' sensors. Nature Nanotechnol. 2, 318–323 (2007).

    ADS  CAS  Article  Google Scholar 

  9. Dubertret, B., Calame, M. & Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol. 19, 365–370 (2001).

    CAS  Article  Google Scholar 

  10. Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E. & Mirkin, C. A. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129, 15477–15479 (2007).

    CAS  Article  Google Scholar 

  11. Wang, Z., Hu, J., Jin, Y., Yao, X. & Li, J. In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin. Chem. 52, 1958–1961 (2006).

    CAS  Article  Google Scholar 

  12. He, L. et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 122, 9071–9077 (2000).

    CAS  Article  Google Scholar 

  13. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    ADS  CAS  Article  Google Scholar 

  14. Wang, J., Liu, G. & Jan, M. R. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004).

    CAS  Article  Google Scholar 

  15. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    ADS  CAS  Article  Google Scholar 

  16. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    ADS  CAS  Article  Google Scholar 

  17. Soman, C. P. & Giorgio, T. D. Quantum dot self-assembly for protein detection with sub-picomolar sensitivity. Langmuir 24, 4399–4404 (2008).

    CAS  Article  Google Scholar 

  18. Catalano, S. M. et al. The role of amyloid-β derived diffusible ligands (ADDLs) in Alzheimer's disease. Curr. Top. Med. Chem. 6, 597–608 (2006).

    CAS  Article  Google Scholar 

  19. Perrin, R., Fagan, A. & Holtzman, D. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461, 916–922 (2009).

    ADS  CAS  Article  Google Scholar 

  20. Georganopoulou, D. G. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).

    ADS  CAS  Article  Google Scholar 

  21. Thaxton, C. S. et al. Nanoparticle-based bio-barcode assay redefines 'undetectable' PSA and biochemical recurrence after radical prostatectomy. Proc. Natl Acad. Sci. USA 106, 18437–18442 (2009).

    ADS  CAS  Article  Google Scholar 

  22. Sano, T., Smith, C. L. & Cantor, C. R. Immuno-PCR: very sensitive antigen detection by means of specific antibody–DNA conjugates. Science 258, 120–122 (1992).

    ADS  CAS  Article  Google Scholar 

  23. McFarland, A. D. & Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

    ADS  CAS  Article  Google Scholar 

  24. Liu, J. & Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    CAS  Article  Google Scholar 

  25. Lee, J.-S., Han, M. S. & Mirkin, C. A. Colorimetric detection of mercuric ion in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Edn Engl. 46, 4093–4096 (2007).

    CAS  Article  Google Scholar 

  26. Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J. & West, J. L. A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381 (2003).

    CAS  Article  Google Scholar 

  27. Jayasena, S. D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650 (1999).

    CAS  PubMed  Google Scholar 

  28. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990). This paper describes the identification of RNA aptamers.

    ADS  CAS  Article  Google Scholar 

  29. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995). This study demonstrated the use of microarray analysis for profiling gene expression patterns.

    ADS  CAS  Article  Google Scholar 

  30. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    ADS  CAS  Article  Google Scholar 

  31. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    ADS  CAS  Article  Google Scholar 

  32. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    ADS  CAS  Article  Google Scholar 

  33. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Patel for assistance with preparing Table 1. We also thank the US National Science Foundation, the National Cancer Institute and the National Institutes of Health for research support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

C.A.M. is one of the co-founders of Nanosphere (Northbrook, Illinois).

Additional information

Reprints and permission information is available at http://www.nature.com/reprints. The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/nature. Correspondence should be addressed to C.A.M. (chadnano@northwestern.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giljohann, D., Mirkin, C. Drivers of biodiagnostic development. Nature 462, 461–464 (2009). https://doi.org/10.1038/nature08605

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08605

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing