Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thickness and Clapeyron slope of the post-perovskite boundary

An Erratum to this article was published on 21 January 2010

Abstract

The thicknesses and Clapeyron slopes of mantle phase boundaries strongly influence the seismic detectability of the boundaries and convection in the mantle. The unusually large positive Clapeyron slope found for the boundary between perovskite (Pv) and post-perovskite (pPv)1,2,3 (the ‘pPv boundary’) would destabilize high-temperature anomalies in the lowermost mantle4, in disagreement with the seismic observations5. Here we report the thickness of the pPv boundary in (Mg0.91Fe2+0.09)SiO3 and (Mg0.9Fe3+0.1)(Al0.1Si0.9)O3 as determined in a laser-heated diamond-anvil cell under in situ high-pressure (up to 145 GPa), high-temperature (up to 3,000 K) conditions. The measured Clapeyron slope is consistent with the D′′ discontinuity6. In both systems, however, the pPv boundary thickness increases to 400–600 ± 100 km, which is substantially greater than the thickness of the D′′ discontinuity (<30 km)7. Although the Fe2+ buffering effect of ferropericlase8,9,10 could decrease the pPv boundary thickness, the boundary may remain thick in a pyrolitic composition because of the effects of Al and the rapid temperature increase in the D′′ layer. The pPv boundary would be particularly thick in regions with an elevated Al content and/or a low Mg/Si ratio, reducing the effects of the large positive Clapeyron slope on the buoyancy of thermal anomalies and stabilizing compositional heterogeneities in the lowermost mantle. If the pPv transition is the source of the D′′ discontinuity, regions with sharp discontinuities may require distinct compositions, such as a higher Mg/Si ratio or a lower Al content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction patterns at high pressure and temperature.
Figure 2: The pressure–temperature conditions for the stability of Pv, Pv+pPv and pPv.
Figure 3: The Pv+pPv mixed-phase region with mantle geotherms and the pPv phase-fraction profiles in the mixed-phase region.

Similar content being viewed by others

References

  1. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D′′ layer. Nature 430, 445–448 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Tsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R. M. Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet. Sci. Lett. 224, 241–248 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Tateno, S., Hirose, K., Sata, N. & Ohishi, Y. Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D′′ layer. Earth Planet. Sci. Lett. 277, 130–136 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Nakagawa, T. & Tackley, P. J. Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection. Geophys. Res. Lett. 31, L16611 (2004)

    Article  ADS  Google Scholar 

  5. Garnero, E. J., Lay, T. & McNamara, A. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) 79–101 (Geological Society of America, 2007)

    Google Scholar 

  6. Sidorin, I., Gurnis, M. & Helmberger, D. V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286, 1326–1331 (1999)

    Article  CAS  Google Scholar 

  7. Lay, T. Sharpness of the D'' discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition. Geophys. Res. Lett. 35, L03304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kobayashi, Y. et al. Fe-Mg partitioning between (Mg,Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys. Res. Lett. 32, L19301 (2005)

    ADS  Google Scholar 

  9. Auzende, A.-L. et al. Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet. Sci. Lett. 269, 164–174 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Ono, S. & Oganov, A. R. In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet. Sci. Lett. 236, 914–932 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Lay, T., Williams, Q. & Garnero, E. J. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Garnero, E. J. Heterogeneity of the lowermost mantle. Annu. Rev. Earth Planet. Sci. 28, 509–537 (2000)

    Article  ADS  Google Scholar 

  13. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Shim, S.-H., Duffy, T. S., Jeanloz, R. & Shen, G. Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys. Res. Lett. 31, L10603 (2004)

    Article  ADS  Google Scholar 

  15. Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J. & Price, G. D. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438, 1004–1007 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A post-perovskite lens and D'' heat flux beneath the central Pacific. Science 314, 1272–1276 (2006)

    Article  ADS  CAS  Google Scholar 

  17. van der Hilst, R. D. et al. Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region. Science 315, 1813–1817 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Hirose, K., Sinmyo, R., Sata, N. & Ohishi, Y. Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Geophys. Res. Lett. 33, L01310 (2006)

    Article  ADS  Google Scholar 

  19. Mao, W. L. et al. Ferromagnesian postperovskite silicates in the D'' layer of the Earth. Proc. Natl. Acad. Sci. USA 101, 15867–15869 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Tateno, S., Hirose, K., Sata, N. & Ohishi, Y. Phase relations in Mg3Al2Si3O12 to 180 GPa: effect of Al on post-perovskite phase transition. Geophys. Res. Lett. 32, L15306 (2005)

    Article  ADS  Google Scholar 

  21. Nishio-Hamane, D., Fujino, K., Seto, Y. & Nagai, T. Effect of the incorporation of FeAlO3 into MgSiO3 perovskite on the post-perovskite transition. Geophys. Res. Lett. 34, L12307 (2007)

    Article  ADS  Google Scholar 

  22. Stixrude, L. Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res. 102, 14835–14852 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Sinmyo, R. et al. Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. J. Geophys. Res. 113, B11204 (2008)

    Article  ADS  Google Scholar 

  24. McCammon, C. Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387, 694–696 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Sinmyo, R., Hirose, K., O’Neill, H. S. C. & Okunishi, E. Ferric iron in Al-bearing post-perovskite. Geophys. Res. Lett. 33, L12S13 (2006)

    Article  Google Scholar 

  26. Hirose, K., Fei, Y., Ma, Y. Z. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Murakami, M., Hirose, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys. Res. Lett. 32, L03304 (2005)

    Article  ADS  Google Scholar 

  28. Hutko, A. R., Lay, T., Revenaugh, J. & Garnero, E. J. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle. Science 320, 1070–1074 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science 296, 1850–1852 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Shim, S.-H. et al. Crystal structure and thermoelastic properties of (Mg0. 91Fe0. 09)SiO3 postperovskite up to 135 GPa and 2700 K. Proc. Natl. Acad. Sci. USA 105, 7382–7386 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Tangeman, J. A. et al. Vitreous forsterite (Mg2SiO4): synthesis, structure, and thermochemistry. Geophys. Res. Lett. 28, 2517–2520 (2001)

    Article  ADS  CAS  Google Scholar 

  32. Hammersley, A. P. Fit2d: An Introduction and Overview. ESRF Internal Report (European Synchrotron Radiation Facility, 1997)

    Google Scholar 

  33. Tsuchiya, T. First-principles prediction of the PVT equation of state of gold and the 660-km discontinuity in Earth’s mantle. J. Geophys. Res. 108, 2462 (2003)

    Article  ADS  Google Scholar 

  34. Jeanloz, R. & Heinz, D. L. Experiments at high temperature and pressure: laser heating through the diamond cell. J. Phys. (Paris) 45, C8–83–C8-92 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Science Foundation (NSF) grant EAR0738655 (S.-H.S.) and a US Department of Energy (DOE) National Nuclear Security Administration Stewardship Science Graduate Fellowship (K.C.). A. Kubo and B. Grocholski assisted in X-ray measurements. Discussion with T. L. Grove and R. D. van der Hilst improved the paper. This work was performed in the GeoSoilEnviroCARS sector of the Advanced Light Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the NSF and the DOE. Use of the APS is supported by the DOE.

Author Contributions K.C. and S.-H.S. prepared and made the measurements on (Mg0.9Fe0.1)(Al0.1Si0.9)O3 and (Mg0.91Fe0.09)SiO3, respectively. V.P. assisted in the synchrotron measurements. K.C. and S.-H.S. conducted the data analysis and calculations. S.-H.S. and K.C. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Heon Shim.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Data, Supplementary References, Supplementary Figures 1-5 with Legends and Supplementary Table 1. (PDF 365 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalli, K., Shim, SH. & Prakapenka, V. Thickness and Clapeyron slope of the post-perovskite boundary. Nature 462, 782–785 (2009). https://doi.org/10.1038/nature08598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08598

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing