Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency of gamma oscillations routes flow of information in the hippocampus


Gamma oscillations are thought to transiently link distributed cell assemblies that are processing related information1,2, a function that is probably important for network processes such as perception1,2,3, attentional selection4 and memory5,6. This ‘binding’ mechanism requires that spatially distributed cells fire together with millisecond range precision7,8; however, it is not clear how such coordinated timing is achieved given that the frequency of gamma oscillations varies substantially across space and time, from 25 to almost 150 Hz1,9,10,11,12,13. Here we show that gamma oscillations in the CA1 area of the hippocampus split into distinct fast and slow frequency components that differentially couple CA1 to inputs from the medial entorhinal cortex, an area that provides information about the animal’s current position14,15,16,17, and CA3, a hippocampal subfield essential for storage of such information14,18,19. Fast gamma oscillations in CA1 were synchronized with fast gamma in medial entorhinal cortex, and slow gamma oscillations in CA1 were coherent with slow gamma in CA3. Significant proportions of cells in medial entorhinal cortex and CA3 were phase-locked to fast and slow CA1 gamma waves, respectively. The two types of gamma occurred at different phases of the CA1 theta rhythm and mostly on different theta cycles. These results point to routeing of information as a possible function of gamma frequency variations in the brain and provide a mechanism for temporal segregation of potentially interfering information from different sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two bands of gamma oscillations in CA1.
Figure 2: Differential coupling with MEC and CA3 during fast and slow gamma oscillations in CA1.
Figure 3: Interregional synchrony during slow and fast gamma oscillations.
Figure 4: Cell firing patterns during fast and slow gamma oscillations.

Similar content being viewed by others


  1. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Fries, P., Nikolic, D. & Singer, W. The gamma cycle. Trends Neurosci. 30, 309–316 (2007)

    Article  CAS  Google Scholar 

  3. Freeman, W. J. Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalogr. Clin. Neurophysiol. 44, 586–605 (1978)

    Article  CAS  Google Scholar 

  4. Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Lisman, J. E. & Idiart, M. A. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Montgomery, S. M. & Buzsaki, G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl Acad. Sci. USA 104, 14495–14500 (2007)

    Article  ADS  CAS  Google Scholar 

  7. von der Malsburg, C. in Models of Neural Networks II (eds van Hemmen, J. L. & Hordemann, G. J.) 95–119 (Springer, 1994)

    Book  Google Scholar 

  8. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001)

    Article  CAS  Google Scholar 

  9. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995)

    Article  CAS  Google Scholar 

  10. Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003)

    Article  CAS  Google Scholar 

  11. Kay, L. M. Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. J. Integr. Neurosci. 2, 31–44 (2003)

    Article  Google Scholar 

  12. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008)

    Article  CAS  Google Scholar 

  14. Brun, V. H. et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M. B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Brun, V. H. et al. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron 57, 290–302 (2008)

    Article  CAS  Google Scholar 

  18. Sutherland, R. J., Whishaw, I. Q. & Kolb, B. A behavioural analysis of spatial localization following electrolytic, kainite- or colchicines-induced damage to the hippocampal formation in the rat. Behav. Brain Res. 7, 133–153 (1983)

    Article  CAS  Google Scholar 

  19. Steffenach, H. A., Sloviter, R. S., Moser, E. I. & Moser, M. B. Impaired retention of spatial memory after transaction of longitudinally oriented axons of hippocampal CA3 pyramidal cells. Proc. Natl Acad. Sci. USA 99, 3194–3198 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Squire, L. R., Stark, C. E. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004)

    Article  CAS  Google Scholar 

  21. Charpak, S., Pare, D. & Llinas, R. The entorhinal cortex entrains fast CA1 hippocampal oscillations in the anaesthetized guinea-pig: role of the monosynaptic component of the perforant path. Eur. J. Neurosci. 7, 1548–1557 (1995)

    Article  CAS  Google Scholar 

  22. Chrobak, J. J. & Buzsaki, G. Gamma oscillations in the entorhinal cortex of the freely behaving rat. J. Neurosci. 18, 388–398 (1998)

    Article  CAS  Google Scholar 

  23. Senior, T. J., Huxter, J. R., Allen, K., O’Neill, J. & Csicsvari, J. Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus. J. Neurosci. 28, 2274–2286 (2008)

    Article  CAS  Google Scholar 

  24. Womelsdorf, T. et al. Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609–1612 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000)

    Article  CAS  Google Scholar 

  26. Blum, K. I. & Abbott, L. F. A model of spatial map formation in the hippocampus of the rat. Neural Comput. 8, 85–93 (1996)

    Article  CAS  Google Scholar 

  27. Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Hasselmo, M. E., Bodelon, C. & Wyble, B. P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002)

    Article  Google Scholar 

  29. Huerta, P. T. & Lisman, J. E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro . Neuron 15, 1053–1063 (1995)

    Article  CAS  Google Scholar 

  30. Jutras, M. J., Fries, P. & Buffalo, E. A. Gamma-band synchronization in the macaque hippocampus and memory formation. J. Neurosci. 29, 12521–12531 (2009)

    Article  CAS  Google Scholar 

Download references


We thank A. M. Amundsgaard, K. Haugen, K. Jenssen, E. Sjulstad, R. Skjerpeng and H. Waade for technical assistance, M. P. Witter for assistance with recording site localization, E. J. Henriksen and K. Jezek for donating rats for supplementary analyses, C. A. Barnes for helpful comments on the manuscript and G. Buzsáki and a number of other colleagues for helpful discussions. This work was supported by the Kavli Foundation and a Centre of Excellence grant from the Norwegian Research Council.

Author Contributions L.L.C., O.J., M.-B.M. and E.I.M. planned experiments and analyses, L.L.C., T.D., M.F., T.H. and T.B. collected data, L.L.C., T.D. and O.J. wrote analysis programs, L.L.C. and T.D. analysed data, and L.L.C. and E.I.M. wrote the paper, in collaboration with M.-B.M. All authors discussed the results.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Laura Lee Colgin or Edvard I. Moser.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18 with Legends, Supplementary Tables 1-3, Supplementary Methods and Supplementary References. (PDF 2307 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colgin, L., Denninger, T., Fyhn, M. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing