Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme

Abstract

How living systems detect the presence of genotoxic damage embedded in a million-fold excess of undamaged DNA is an unresolved question in biology. Here we have captured and structurally elucidated a base-excision DNA repair enzyme, MutM, at the stage of initial encounter with a damaged nucleobase, 8-oxoguanine (oxoG), nested within a DNA duplex. Three structures of intrahelical oxoG-encounter complexes are compared with sequence-matched structures containing a normal G base in place of an oxoG lesion. Although the protein–DNA interfaces in the matched complexes differ by only two atoms—those that distinguish oxoG from G—their pronounced structural differences indicate that MutM can detect a lesion in DNA even at the earliest stages of encounter. All-atom computer simulations show the pathway by which encounter of the enzyme with the lesion causes extrusion from the DNA duplex, and they elucidate the critical free energy difference between oxoG and G along the extrusion pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and recognition of 8-oxoguanine.
Figure 2: Helix-penetration by MutM residues.
Figure 3: OxoG-dependent local DNA structure alterations at the site of the target base in EC3 and EC5.
Figure 4: Free energy profiles of nucleobase extrusion imply active participation of MutM.
Figure 5: R112-catalysed oxoG extrusion.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structures have been deposited with the Protein Data Bank under accession codes 3GPY (LRC3), 3GO8 (EC3), 3GP1 (EC3V222P), 3GPP (EC3T224P), 3GPU (EC4), 3GPX (IC4), 3GQ4 (LRC5), 3GQ3(EC5) and 3GQ5 (IC5).

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Loeb, L. A. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001)

    CAS  PubMed  Google Scholar 

  3. Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476 (2004)

    Article  CAS  Google Scholar 

  4. Fromme, J. C. & Verdine, G. L. Base excision repair. Adv. Protein Chem. 69, 1–41 (2004)

    Article  CAS  Google Scholar 

  5. Grollman, A. P. & Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 246–249 (1993)

    Article  CAS  Google Scholar 

  6. Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Lipscomb, L. A. et al. X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proc. Natl Acad. Sci. USA 92, 719–723 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Oda, Y. et al. NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res. 19, 1407–1412 (1991)

    Article  CAS  Google Scholar 

  9. Plum, G. E., Grollman, A. P., Johnson, F. & Breslauer, K. J. Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Biochemistry 34, 16148–16160 (1995)

    Article  CAS  Google Scholar 

  10. Bowman, B. R., Lee, S., Wang, S. & Verdine, G. L. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA. Structure 16, 1166–1174 (2008)

    Article  CAS  Google Scholar 

  11. Fromme, J. C. & Verdine, G. L. DNA lesion recognition by the bacterial repair enzyme MutM. J. Biol. Chem. 278, 51543–51548 (2003)

    Article  CAS  Google Scholar 

  12. Bruner, S. D., Norman, D. P. G. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Zharkov, D. O. Base excision DNA repair. Cell. Mol. Life Sci. 65, 1544–1565 (2008)

    Article  CAS  Google Scholar 

  14. Banerjee, A., Santos, W. L. & Verdine, G. L. Structure of a DNA glycosylase searching for lesions. Science 311, 1153–1157 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Hsu, G. W., Ober, M., Carell, T. & Beese, L. S. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 431, 217–221 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Hu, J., Ma, A. & Dinner, A. R. A two-step nucleotide-flipping mechanism enables kinetic discrimination of DNA lesions by AGT. Proc. Natl Acad. Sci. USA 105, 4615–4620 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Priyakumar, U. D. & Mackerell, A. D. NMR imino proton exchange experiments on duplex DNA primarily monitor the opening of purine bases. J. Am. Chem. Soc. 128, 678–679 (2006)

    Article  CAS  Google Scholar 

  18. Banavali, N. K. & MacKerell, A. D. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J. Mol. Biol. 319, 141–160 (2002)

    Article  CAS  Google Scholar 

  19. Cheng, X. et al. Dynamic behavior of DNA base pairs containing 8-oxoguanine. J. Am. Chem. Soc. 127, 13906–13918 (2005)

    Article  CAS  Google Scholar 

  20. Yang, W. Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair (Amst.) 5, 654–666 (2006)

    Article  CAS  Google Scholar 

  21. Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L. & Xie, X. S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl Acad. Sci. USA 103, 5752–5757 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Minetti, C. A. et al. Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes. J. Mol. Biol. 328, 1047–1060 (2003)

    Article  CAS  Google Scholar 

  23. Fedorova, O. S. et al. Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates. Biochemistry 41, 1520–1528 (2002)

    Article  CAS  Google Scholar 

  24. Ishchenko, A. A. et al. Thermodynamic, kinetic, and structural basis for recognition and repair of 8-oxoguanine in DNA by Fpg protein from Escherichia coli . Biochemistry 41, 7540–7548 (2002)

    Article  CAS  Google Scholar 

  25. Parker, J. B. et al. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 449, 433–437 (2007)

    Article  ADS  CAS  Google Scholar 

  26. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  27. Mackerell, A. D. & Banavali, N. K. All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 21, 105–120 (2000)

    Article  CAS  Google Scholar 

  28. Foloppe, N. & Mackerell, A. D. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000)

    Article  CAS  Google Scholar 

  29. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  ADS  CAS  Google Scholar 

  30. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)

    Article  CAS  Google Scholar 

  31. van der Vaart, A. & Karplus, M. Simulation of conformational transitions by the restricted perturbation-targeted molecular dynamics method. J. Chem. Phys. 122, 114903 (2005)

    Article  ADS  Google Scholar 

  32. Paci, E. & Karplus, M. Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J. Mol. Biol. 288, 441–459 (1999)

    Article  CAS  Google Scholar 

  33. Hu, J., Ma, A. & Dinner, A. R. Bias annealing: A method for obtaining transition paths de novo . J. Chem. Phys. 125, 114101 (2006)

    Article  ADS  Google Scholar 

  34. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187 (1977)

    Article  ADS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  36. Brünger, A. T. et al. Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  37. Emsley, P. & Cowan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  38. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  Google Scholar 

  39. Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006)

    Article  Google Scholar 

  40. Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187 (1983)

    Article  CAS  Google Scholar 

  41. Macke, T. & Case, D. A. in Molecular modeling of nucleic acids (eds Leontes, N. B. & SantaLucia, J. Jr) 379–393 (American Chemical Society, 1998)

    Google Scholar 

  42. Allen, M. P. & Tildesley, D. J. Computer simulation of liquids (Oxford Univ. Press, 1989)

    MATH  Google Scholar 

  43. Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  CAS  Google Scholar 

  44. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  CAS  Google Scholar 

  45. Schlitter, J., Engels, M., Krueger, P., Jacoby, E. & Wollmer, A. Targeted molecular dynamics simulation of conformational change-application to the T↔R transition in insulin. Mol. Simul. 10, 291–308 (1993)

    Article  CAS  Google Scholar 

  46. Banavali, N. K. & MacKerell, A. D. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J. Mol. Biol. 319, 141–160 (2002)

    Article  CAS  Google Scholar 

  47. Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A. & Rosenberg, J. M. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)

    Article  CAS  Google Scholar 

  48. Rajamani, R., Naidoo, K. J. & Gao, J. Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution. J. Comput. Chem. 24, 1775–1781 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH: GM044853, GM047467, CA100742 (G.L.V.) and GM030804 (M.K.). Y.Q. is supported by a predoctoral fellowship from the National Science Foundation; M.C.S. by a predoctoral fellowship from the Howard Hughes Medical Institute; K.N. by a postdoctoral fellowship from National Cancer Center. We thank the staff of the NSLS, APS and CHESS synchrotron facilities. These experiments made use of the computing facilities at NERSC and Harvard FAS. We are grateful to J. Jin for experimental assistance and J. Pu, V. Ovchinnikov and other members of the Karplus and Verdine groups for helpful advice.

Author Contributions Y.Q., M.C.S., K.N. and A.B. contributed equally to the study. A.B., S.J. and M.C.S. cloned the constructs. A.B., M.C.S. and S.J. performed the biochemical and FP assays. A.B., S.J., M.C.S. and Y.Q. purified, crystallized and collected X-ray diffraction data and solved structures (A.B., S.J.: EC4, EC5; M.C.S.: EC3, EC3V222P, EC3T224P, IC4, LRC5; Y.Q.: LRC3, EC3T224P, EC5, IC5, LRC5). A.B. and G.L.V. designed the trapping strategy and crystallographic studies. K.N. and M.K. designed the computational studies, which K.N. then performed. A.B., M.C.S., Y.Q., K.N., G.L.V. and M.K. analysed data and wrote the paper. G.L.V. and M.K. directed the research. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Karplus or Gregory L. Verdine.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary References, Supplementary Figures 1-21 with Legends and Supplementary Tables S1- S3. (PDF 9032 kb)

Supplementary Movie 1

This movie file shows the MutM-assisted base extrusion pathway calculated using the EC4 crystal structure. The target base is oxoG. (MOV 6863 kb)

Supplementary Movie 2

This movie file shows the MutM-assisted base extrusion pathway calculated using the IC4 crystal structure. The target base is G. (MOV 6548 kb)

Supplementary Movie 3

This movie file shows the MutM-assisted base extrusion pathway calculated using the EC5 crystal structure. The target base is oxoG. (MOV 6869 kb)

Supplementary Movie 4

This movie file shows the MutM-assisted base extrusion pathway calculated using the IC5 crystal structure. The target base is G. (MOV 6616 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Spong, M., Nam, K. et al. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature 462, 762–766 (2009). https://doi.org/10.1038/nature08561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08561

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing