Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A connection between star formation activity and cosmic rays in the starburst galaxy M82

Abstract

Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery1. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size—more than 50 times the diameter of similar Galactic regions—uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density2. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse γ-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted3,4 to be the brightest starburst galaxy in terms of γ-ray emission. Here we report the detection of >700-GeV γ-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm-3 in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VHE image of the M82 region.
Figure 2: Gamma-ray flux compared with a theoretical prediction.

Similar content being viewed by others

References

  1. Butt, Y. Beyond the myth of the supernova-remnant origin of cosmic rays. Nature 460, 701–704 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Pohl, M. On the predictive power of the minimum energy condition. 2: Fractional calorimeter behaviour in the diffuse high energy gamma emission of spiral galaxies. Astron. Astrophys. 287, 453–462 (1994)

    ADS  CAS  Google Scholar 

  3. Persic, M., Rephaeli, Y. & Arieli, Y. Very-high-energy emission from M 82. Astron. Astrophys. 486, 143–149 (2008)

    Article  ADS  CAS  Google Scholar 

  4. de Cea del Pozo, E., Torres, D. F. & Marrero, A. Y. R. Multimessenger model for the starburst galaxy M82. Astrophys. J. 698, 1054–1060 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Sakai, S. & Madore, B. F. Detection of the red giant branch stars in M82 using the Hubble Space Telescope. Astrophys. J. 526, 599–606 (1999)

    Article  ADS  Google Scholar 

  6. Yun, M. S., Ho, P. T. P. & Lo, K. Y. A high-resolution image of atomic hydrogen in the M81 group of galaxies. Nature 372, 530–532 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Völk, H. J., Aharonian, F. A. & Breitschwerdt, D. The nonthermal energy content and gamma-ray emission of starburst galaxies and clusters of galaxies. Space Sci. Rev. 75, 279–297 (1996)

    ADS  Google Scholar 

  8. Melo, V. P., Muñoz-Tuñón, C., Maíz-Apellániz, J. & Tenorio-Tagle, G. Young super star clusters in the starburst of M82: the catalog. Astrophys. J. 619, 270–290 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Kronberg, P. P., Biermann, P. & Schwab, F. R. The nucleus of M82 at radio and X-ray bands – discovery of a new radio population of supernova candidates. Astrophys. J. 291, 693–707 (1985)

    Article  ADS  CAS  Google Scholar 

  10. Fenech, D. M., Muxlow, T. W. B., Beswick, R. J., Pedlar, A. & Argo, M. K. Deep MERLIN 5 GHz radio imaging of supernova remnants in the M82 starburst. Mon. Not. R. Astron. Soc. 391, 1384–1402 (2008)

    Article  ADS  Google Scholar 

  11. Rieke, G. H., Lebofsky, M. J., Thompson, R. I., Low, F. J. & Tokunaga, A. T. The nature of the nuclear sources in M82 and NGC 253. Astrophys. J. 238, 24–40 (1980)

    Article  ADS  CAS  Google Scholar 

  12. Weiß, A., Neininger, N., Hüttemeister, S. & Klein, U. The effect of violent star formation on the state of the molecular gas in M 82. Astron. Astrophys. 365, 571–587 (2001)

    Article  ADS  Google Scholar 

  13. Blom, J. J., Paglione, T. A. D. & Carramiñana, A. Diffuse gamma-ray emission from starburst galaxies and M31. Astrophys. J. 516, 744–749 (1999)

    Article  ADS  Google Scholar 

  14. Nagai, T. Search for Tev Gamma-Ray Emission from Nearby Starburst Galaxies. PhD thesis, Univ. Utah (2005)

    Google Scholar 

  15. Götting, N. Nachweis von TeV-Gamma-Strahlung aus der Richtung der Blazare H1426+428 und 1ES1959+650 sowie der Radiogalaxie M87 mit den HEGRA-Cherenkov-Teleskopen. PhD thesis, Univ. Hamburg (2007)

    Google Scholar 

  16. Holder, J. et al. Status of the VERITAS Observatory. AIP Conf. Proc. 1085, 657–660 (2008)

    Article  ADS  Google Scholar 

  17. Daniel, M. K. in Proc. 30th Internat. Cosmic Ray Conf. Vol. 3 (eds Caballero, R. et al.) 1325–1328 (2008)

    Google Scholar 

  18. Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A. & Soifer, B. T. The IRAS revised bright galaxy sample. Astron. J. 126, 1607–1664 (2003)

    Article  ADS  Google Scholar 

  19. Wills, K. A., Pedlar, A., Muxlow, T. W. B. & Stevens, I. R. A possible active galactic nucleus in M82? N. Astron. Rev. 43, 633–637 (1999)

    Article  ADS  Google Scholar 

  20. Klein, U., Wielebinski, R. & Morsi, H. W. Radio continuum observations of M82. Astron. Astrophys. 190, 41–46 (1988)

    ADS  CAS  Google Scholar 

  21. Strickland, D. K. & Heckman, T. M. Iron line and diffuse hard X-Ray emission from the starburst galaxy M82. Astrophys. J. 658, 258–281 (2007)

    Article  ADS  CAS  Google Scholar 

  22. van der Kruit, P. C. Observations of core sources in Seyfert and normal galaxies with the Westerbork synthesis radio telescope at 1415 MHz. Astron. Astrophys. 15, 110–122 (1971)

    ADS  Google Scholar 

  23. Helou, G., Soifer, B. T. & Rowan-Robinson, M. Thermal infrared and nonthermal radio – remarkable correlation in disks of galaxies. Astrophys. J. 298, L7–L11 (1985)

    Article  ADS  CAS  Google Scholar 

  24. Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992)

    Article  ADS  Google Scholar 

  25. Voelk, H. J. The correlation between radio and far-infrared emission for disk galaxies – a calorimeter theory. Astron. Astrophys. 218, 67–70 (1989)

    ADS  Google Scholar 

  26. Helou, G. & Bicay, M. D. A physical model of the infrared-to-radio correlation in galaxies. Astrophys. J. 415, 93–100 (1993)

    Article  ADS  Google Scholar 

  27. Groves, B. A., Cho, J., Dopita, M. & Lazarian, A. The radio-FIR correlation: is MHD turbulence the cause? Publ. Astron. Soc. Aust. 20, 252–256 (2003)

    Article  ADS  Google Scholar 

  28. Berge, D., Funk, S. & Hinton, J. Background modelling in very-high-energy γ-ray astronomy. Astron. Astrophys. 466, 1219–1229 (2007)

    Article  ADS  Google Scholar 

  29. Helene, O. Upper limit of peak area. Nucl. Instrum. Methods Phys. Res. 212, 319–322 (1983)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by grants from the US Department of Energy, the US National Science Foundation and the Smithsonian Institution, and by the National Science and Engineering Research Council of Canada, Science Foundation Ireland and the UK Science and Technology Facilities Council. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and the institutions that collaborated in the construction and operation of the VERITAS array.

Author Contributions VERITAS is a collaboration of scientists who jointly participate in all aspects of the scientific effort: the collecting of data, the development of software for analysis and simulations, the analysis of data and the interpretation of the results. Every author has read the paper and agrees with the results.

Author information

Authors and Affiliations

Consortia

Corresponding author

Correspondence to W. Benbow.

Additional information

A list of participants and their affiliations appears at the end of the paper.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary References and Supplementary Figures 1-2 with Legends. (PDF 206 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

The VERITAS Collaboration. A connection between star formation activity and cosmic rays in the starburst galaxy M82 . Nature 462, 770–772 (2009). https://doi.org/10.1038/nature08557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08557

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing