Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct inhibition of the NOTCH transcription factor complex

An Erratum to this article was published on 21 January 2010

Abstract

Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized α-helical peptides that target a critical protein–protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Design of MAML1-derived stapled peptides targeting NOTCH1–CSL.
Figure 2: SAHM1 specifically engages the NOTCH1 transactivation complex.
Figure 3: SAHM1 represses NOTCH1 target gene expression.
Figure 4: SAHM1 reduces T-ALL proliferation and leukaemic initiation potential.
Figure 5: SAHM1 treatment inhibits NOTCH signalling and leukaemic progression in vivo.

Accession codes

Primary accessions

Gene Expression Omnibus

Protein Data Bank

Data deposits

All microarray data has been deposited to the Gene Expression Omnibus at the National Center for Biotechnology Information under accession numbers GSE18198 and GSE18351.

References

  1. Darnell, J. E. Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740–749 (2002)

    CAS  Article  Google Scholar 

  2. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999)

    ADS  CAS  Article  Google Scholar 

  3. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006)

    CAS  Article  Google Scholar 

  4. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999)

    ADS  CAS  Article  Google Scholar 

  5. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529 (1999)

    ADS  CAS  Article  Google Scholar 

  6. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999)

    ADS  CAS  Article  Google Scholar 

  7. Fortini, M. E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in notch receptor signaling. Cell 79, 273–282 (1994)

    CAS  Article  Google Scholar 

  8. Petcherski, A. G. & Kimble, J. Mastermind is a putative activator for Notch. Curr. Biol. 10, R471–R473 (2000)

    CAS  Article  Google Scholar 

  9. Wu, L. et al. MAML1, a human homologue of Drosophila Mastermind, is a transcriptional co-activator for NOTCH receptors. Nature Genet. 26, 484–489 (2000)

    CAS  Article  Google Scholar 

  10. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997)

    CAS  Article  Google Scholar 

  11. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996)

    ADS  CAS  Article  Google Scholar 

  12. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005)

    ADS  CAS  Article  Google Scholar 

  13. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991)

    CAS  Article  Google Scholar 

  14. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004)

    ADS  CAS  Article  Google Scholar 

  15. O’Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007)

    Article  Google Scholar 

  16. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004)

    CAS  Article  Google Scholar 

  17. Fre, S. et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435, 964–968 (2005)

    ADS  CAS  Article  Google Scholar 

  18. Uyttendaele, H. et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122, 2251–2259 (1996)

    CAS  PubMed  Google Scholar 

  19. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003)

    CAS  Article  Google Scholar 

  20. Konishi, J. et al. γ-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res. 67, 8051–8057 (2007)

    CAS  Article  Google Scholar 

  21. Nefedova, Y., Cheng, P., Alsina, M., Dalton, W. S. & Gabrilovich, D. I. Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 103, 3503–3510 (2004)

    CAS  Article  Google Scholar 

  22. Park, J. T. et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 66, 6312–6318 (2006)

    CAS  Article  Google Scholar 

  23. Miyamoto, Y. et al. Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003)

    CAS  Article  Google Scholar 

  24. Seiffert, D. et al. Presenilin-1 and -2 are molecular targets for γ-secretase inhibitors. J. Biol. Chem. 275, 34086–34091 (2000)

    CAS  Article  Google Scholar 

  25. Dovey, H. F. et al. Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001)

    CAS  Article  Google Scholar 

  26. Lleó, A. Activity of γ-secretase on substrates other than APP. Curr. Top. Med. Chem. 8, 9–16 (2008)

    MathSciNet  Article  Google Scholar 

  27. Riccio, O. et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 9, 377–383 (2008)

    CAS  Article  Google Scholar 

  28. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004)

    CAS  Article  Google Scholar 

  29. Weng, A. P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell. Biol. 23, 655–664 (2003)

    CAS  Article  Google Scholar 

  30. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006)

    CAS  Article  Google Scholar 

  31. Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124, 985–996 (2006)

    CAS  Article  Google Scholar 

  32. Schafmeister, C. E., Po, J. & Verdine, G. L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000)

    CAS  Article  Google Scholar 

  33. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004)

    ADS  CAS  Article  Google Scholar 

  34. Del Bianco, C., Aster, J. C. & Blacklow, S. C. Mutational and energetic studies of Notch 1 transcription complexes. J. Mol. Biol. 376, 131–140 (2008)

    CAS  Article  Google Scholar 

  35. Aster, J. C. et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol. Cell. Biol. 20, 7505–7515 (2000)

    CAS  Article  Google Scholar 

  36. Hallis, T. M. et al. An improved β-lactamase reporter assay: multiplexing with a cytotoxicity readout for enhanced accuracy of hit identification. J. Biomol. Screen. 12, 635–644 (2007)

    CAS  Article  Google Scholar 

  37. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006)

    ADS  CAS  Article  Google Scholar 

  38. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    ADS  CAS  Article  Google Scholar 

  39. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006)

    ADS  CAS  Article  Google Scholar 

  40. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006)

    CAS  Article  Google Scholar 

  41. Rao, S. S. et al. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res. 69, 3060–3068 (2009)

    CAS  Article  Google Scholar 

  42. Lewis, H. D. et al. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem. Biol. 14, 209–219 (2007)

    CAS  Article  Google Scholar 

  43. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med. 13, 1203–1210 (2007)

    CAS  Article  Google Scholar 

  44. Becker, C. M. et al. A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenic therapy. Am. J. Pathol. 168, 2074–2084 (2006)

    CAS  Article  Google Scholar 

  45. Stubbs, M. C. et al. MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Leukemia 22, 66–77 (2008)

    CAS  Article  Google Scholar 

  46. Real, P. J. et al. γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nature Med. 15, 50–58 (2009)

    CAS  Article  Google Scholar 

  47. Nam, Y., Weng, A. P., Aster, J. C. & Blacklow, S. C. Structural requirements for assembly of the CSL·intracellular Notch1·Mastermind-like 1 transcriptional activation complex. J. Biol. Chem. 278, 21232–21239 (2003)

    CAS  Article  Google Scholar 

  48. Chiang, M. Y. et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J. Clin. Invest. 118, 3181–3194 (2008)

    CAS  Article  Google Scholar 

  49. Williams, R. M. & Im, M. N. Asymmetric synthesis of monosubstituted and α, α-disubstituted α-amino acids via diastereoselective glycine enolate alkylations. J. Am. Chem. Soc. 113, 9276–9286 (1991)

    CAS  Article  Google Scholar 

  50. Chen, Y. H., Yang, J. T. & Chau, K. H. Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Schreiber and the Broad Institute Chemical Biology Program for discussions and access to instrumentation; J. Rocnik for assistance in the establishment of the T-ALL murine model; A. Ferrando for providing GSI microarray data; M. Hancock and Invitrogen for providing β-lactamase HeLa reporter clones; K. Ross and A. Subramanian for conversations and guidance about GSEA; and S. Gupta and the Broad Institute Microarray Core. This work was supported by a Specialized Center of Research grant from the Leukaemia & Lymphoma Society (to J.E.B., J.C.A., S.C.B.), an AACR Centennial Pre-doctoral Research Fellowship in Cancer Research (to R.E.M.), the American Society of Hematology (to J.E.B.), MCCB-NIH Training Grant No. 5T32GM007598 (to R.E.M.), the Human Frontier Science Program (to C.D.), and the Harvard & Dana Farber Program in Cancer Chemical Biology (to J.E.B., R.E.M., G.L.V.). The project has been funded in part with Federal funds from the National Cancer Institute’s Initiative for Chemical Genetics, National Institutes of Health, under Contract No. N01-CO-12400. Histology and immunohistochemical staining was performed in the Dana Farber/Harvard Cancer Center Specialized Histopathology Services Core Laboratory.

Author Contributions R.E.M., G.L.V. and J.E.B. conceptualized the study, designed the experiments, interpreted data, and wrote the manuscript. Design, synthesis and biological characterization of SAHM peptides was performed by R.E.M. C.D.B., J.C.A. and S.C.B. contributed key reagents and analysed data. R.E.M., M.C., T.N.D., J.C.A., A.L.K., D.G.G. and J.E.B. established the bioluminescent T-ALL model, designed and performed in vivo experiments and analysed data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory L. Verdine or James E. Bradner.

Ethics declarations

Competing interests

[COMPETING INTERESTS: G.L.V. is a shareholder in and paid consultant of Aileron Therapeutics, which has been granted a license by Harvard University and the Dana Farber Cancer Institute to develop the stapled peptide technology.]

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1 - 8 with Legends and Supplementary Tables 1 - 2. (PDF 3034 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moellering, R., Cornejo, M., Davis, T. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009). https://doi.org/10.1038/nature08543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08543

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing