Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrophysiology in the age of light


Electrophysiology, the 'gold standard' for investigating neuronal signalling, is being challenged by a new generation of optical probes. Together with new forms of microscopy, these probes allow us to measure and control neuronal signals with spatial resolution and genetic specificity that already greatly surpass those of electrophysiology. We predict that the photon will progressively replace the electron for probing neuronal function, particularly for targeted stimulation and silencing of neuronal populations. Although electrophysiological characterization of channels, cells and neural circuits will remain necessary, new combinations of electrophysiology and imaging should lead to transformational discoveries in neuroscience.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Recording and stimulation: past and present.
Figure 2: Measuring the 'when' and 'where' of neuronal signals using electrophysiological and optical approaches.
Figure 3: Recording and imaging on the move.
Figure 4: Synergistic combinations of electrophysiology and imaging.


  1. 1

    Galvani, L. De viribus electricitatis in motu musculari, commentarius. Bonon. Sci. Art. Inst. Acad. 7, 364–415 (1791).

    Google Scholar 

  2. 2

    Ji, N., Shroff, H., Zhong, H. & Betzig, E. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18, 605–616 (2008).

    CAS  PubMed  Google Scholar 

  3. 3

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Wilt, B. A. et al. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Nimchinsky, E. A., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    CAS  PubMed  Google Scholar 

  7. 7

    Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008). By using two-photon glutamate uncaging on individual dendritic branches, this study shows that propagation of dendritic spikes to the soma can be persistently strengthened in a branch-specific manner, and may thus represent a mechanism to store branch-specific synaptic input patterns.

    ADS  CAS  Google Scholar 

  8. 8

    Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005). This paper uses in vivo two-photon calcium imaging of large neuronal populations in the visual cortex with single-cell resolution to reveal the fine-scale architecture of orientation maps in rats and cats, and demonstrates an unexpectedly sharp border between populations of neurons tuned to distinct orientations in cats (but not rats).

    ADS  CAS  Google Scholar 

  9. 9

    Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991). In vivo optical imaging of intrinsic signals in cat visual cortex reveals that the two-dimensional structure of orientation maps is organized around orientation centres in a pinwheel manner.

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981).

    CAS  PubMed  Google Scholar 

  11. 11

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    ADS  CAS  Google Scholar 

  12. 12

    Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    CAS  PubMed  Google Scholar 

  13. 13

    Stepnoski, R. A. et al. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc. Natl Acad. Sci. USA 88, 9382–9386 (1991).

    ADS  CAS  PubMed  Google Scholar 

  14. 14

    Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nature Rev. Neurosci. 5, 874–885 (2004).

    CAS  Google Scholar 

  15. 15

    Sjulson, L. & Miesenböck, G. Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. Physiology 22, 47–55 (2007).

    CAS  PubMed  Google Scholar 

  16. 16

    Salzberg, B. M., Obaid, A. L., Senseman, D. M. & Gainer, H. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306, 36–40 (1983).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Djurisic, M., Antic, S., Chen, W. R. & Zecevic, D. Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neurosci. 24, 6703–6714 (2004).

    CAS  PubMed  Google Scholar 

  18. 18

    Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999).

    CAS  PubMed  Google Scholar 

  19. 19

    Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    ADS  CAS  Google Scholar 

  20. 20

    Palmer, L. M. & Stuart, G. J. Membrane potential changes in dendritic spines during action potentials and synaptic input. J. Neurosci. 29, 6897–6903 (2009).

    CAS  PubMed  Google Scholar 

  21. 21

    Nuriya, M., Jiang, J., Nemet, B., Eisenthal, K. B. & Yuste, R. Imaging membrane potential in dendritic spines. Proc. Natl Acad. Sci. USA 103, 786–790 (2006).

    ADS  CAS  PubMed  Google Scholar 

  22. 22

    Bradley, J., Luo, R., Otis, T. S. & DiGregorio, D. A. Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J. Neurosci. 29, 9197–9209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Dombeck, D. A., Blanchard-Desce, M. & Webb, W. W. Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24, 999–1003 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Siegel, M. S. & Isacoff, E. Y. A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741 (1997).

    CAS  PubMed  Google Scholar 

  25. 25

    Chanda, B. et al. A hybrid approach to measuring electrical activity in genetically specified neurons. Nature Neurosci. 8, 1619–1626 (2005). This breakthrough paper in voltage-sensitive dye imaging reports a new strategy in which large voltage-dependent optical signals are obtained by fluorescence resonance energy transfer between dipicrylamine, a voltage-sensing molecule intercalated into the membrane, and a membrane-anchored form of GFP.

    CAS  PubMed  Google Scholar 

  26. 26

    Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  27. 27

    Sabatini, B. L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000). By combining two-photon calcium imaging from individual dendritic spines with fluctuation analysis of the recorded calcium signals, this study estimates the number of voltage-gated calcium channels in individual spines.

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Yuste, R., Majewska, A., Cash, S. S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Bollmann, J. H. & Engert, F. Subcellular topography of visually driven dendritic activity in the vertebrate visual system. Neuron 61, 895–905 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Greenberg, D. S., Houweling, A. R. & Kerr, J. N. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature Neurosci. 11, 749–751 (2008).

    CAS  PubMed  Google Scholar 

  32. 32

    Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007). This paper reports how placing awake, head-fixed mice on a spherical treadmill allows two-photon imaging of large neuronal populations with single-cell resolution in behaving animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Vogelstein, J. T. et al. Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J. 97, 636–655 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    ADS  CAS  PubMed  Google Scholar 

  35. 35

    Heim, N. & Griesbeck, O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem. 279, 14280–14286 (2004).

    CAS  PubMed  Google Scholar 

  36. 36

    Mao, T., O'Connor, D. H., Scheuss, V., Nakai, J. & Svoboda, K. Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PloS ONE 3, e1796 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    CAS  PubMed  Google Scholar 

  38. 38

    Wallace, D. J. et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nature Methods 5, 797–804 (2008).

    CAS  PubMed  Google Scholar 

  39. 39

    Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods 5, 805–811 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003). This paper reports the first functional characterization of channelrhodopsin-2, a microbial light-gated cation channel, demonstrating that the protein can be used to depolarize the membrane potential of mammalian cells “simply by illumination”, and opening the way to the temporally precise manipulation of neuronal activity with light.

    ADS  CAS  Google Scholar 

  41. 41

    Kim, J. M. et al. Light-driven activation of β2-adrenergic receptor signaling by a chimeric rhodopsin containing the β2-adrenergic receptor cytoplasmic loops. Biochemistry 44, 2284–2292 (2005). This study reports the creation of the first functional chimaera between rhodopsin and a G-protein-coupled receptor that allows G-protein signalling pathways to be controlled using light.

    CAS  Google Scholar 

  42. 42

    Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci. 8, 577–581 (2007).

    CAS  Google Scholar 

  43. 43

    Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Yoshimura, Y., Dantzker, J. L. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

    CAS  PubMed  Google Scholar 

  46. 46

    Lima, S. Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005). References 47 and 48 show that light pulses can trigger action potentials with millisecond precision in mammalian neurons expressing channelrhodopsin-2, demonstrating that light can be used to stimulate the nervous system efficiently and with high temporal precision.

    ADS  CAS  Google Scholar 

  49. 49

    Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    CAS  Google Scholar 

  50. 50

    Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    ADS  CAS  Google Scholar 

  51. 51

    Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PloS ONE 2, e299 (2007). References 50 and 51 show that the combined expression of channelrhodopsin-2 and halorhodopsin, a light-activated chloride pump from archaea, allows excitation or inhibition of neurons using two different wavelengths.

    ADS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri . Nature Neurosci. 11, 631–633 (2008).

    PubMed  Google Scholar 

  53. 53

    Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nature Neurosci. 12, 229–234 (2009).

    CAS  Google Scholar 

  54. 54

    Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Helmstaedter, M., Briggman, K. L. & Denk, W. 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol. 18, 633–641 (2008).

    CAS  PubMed  Google Scholar 

  59. 59

    Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007). By using an activity-dependent promoter, this study opens the way to the genetic tagging of neurons activated by a specific sensory experience, thereby allowing the identification — and potentially the manipulation — of select neuronal circuits in complex networks.

    ADS  CAS  PubMed  Google Scholar 

  60. 60

    Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    CAS  Google Scholar 

  61. 61

    Anderson, C. R. & Stevens, C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (Lond.) 235, 655–691 (1973).

    CAS  Google Scholar 

  62. 62

    Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    ADS  CAS  PubMed  Google Scholar 

  63. 63

    Betz, W. J., Mao, F. & Smith, C. B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    CAS  PubMed  Google Scholar 

  64. 64

    Hires, S. A., Zhu, Y. & Tsien, R. Y. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc. Natl Acad. Sci. USA 105, 4411–4416 (2008).

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Miesenböck, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    ADS  PubMed  Google Scholar 

  66. 66

    Okumoto, S. et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl Acad. Sci. USA 102, 8740–8745 (2005).

    ADS  CAS  PubMed  Google Scholar 

  67. 67

    Cha, A., Snyder, G. E., Selvin, P. R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999).

    ADS  CAS  PubMed  Google Scholar 

  68. 68

    Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S. & Isacoff, E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817 (1999).

    ADS  CAS  PubMed  Google Scholar 

  69. 69

    Sonnleitner, A., Mannuzzu, L. M., Terakawa, S. & Isacoff, E. Y. Structural rearrangements in single ion channels detected optically in living cells. Proc. Natl Acad. Sci. USA 99, 12759–12764 (2002).

    ADS  CAS  PubMed  Google Scholar 

  70. 70

    Churchland, M. M., Yu, B. M., Sahani, M. & Shenoy, K. V. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17, 609–618 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Sohya, K., Kameyama, K., Yanagawa, Y., Obata, K. & Tsumoto, T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci. 27, 2145–2149 (2007). This paper reports in vivo two-photon calcium imaging in the visual cortex of transgenic mice expressing GFP in specific neuronal populations, showing that tuning characteristics differ in distinct neuron types.

    CAS  Google Scholar 

  72. 72

    Berger, T. et al. Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J. Neurophysiol. 97, 3751–3762 (2007).

    CAS  PubMed  Google Scholar 

  73. 73

    Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    ADS  CAS  PubMed  Google Scholar 

  74. 74

    Mizrahi, A., Crowley, J. C., Shtoyerman, E. & Katz, L. C. High-resolution in vivo imaging of hippocampal dendrites and spines. J. Neurosci. 24, 3147–3151 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo . Nature 421, 844–848 (2003).

    ADS  CAS  PubMed  Google Scholar 

  76. 76

    Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717–723 (2004).

    ADS  CAS  PubMed  Google Scholar 

  77. 77

    Rickgauer, J.P. & Tank, D.W. Optimizing two-photon activation of channelrhodopsin-2 for stimulation at cellular resolution. Soc. Neurosci. Abstr. 496.12 (2008).

  78. 78

    Duemani Reddy, G., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neurosci. 11, 713–720 (2008).

    CAS  PubMed  Google Scholar 

  79. 79

    Göbel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007).

    PubMed  Google Scholar 

  80. 80

    Miller, E. K. & Wilson, M. A. All my circuits: using multiple electrodes to understand functioning neural networks. Neuron 60, 483–488 (2008).

    CAS  PubMed  Google Scholar 

  81. 81

    Lee, A. K., Manns, I. D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).

    CAS  Google Scholar 

  82. 82

    Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    CAS  PubMed  Google Scholar 

  83. 83

    Ferezou, I., Bolea, S. & Petersen, C. C. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006).

    CAS  PubMed  Google Scholar 

  84. 84

    Flusberg, B. A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nature Methods 5, 935–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Qiao, Y. et al. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling. Nanotechnology 16, 1598–1602 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).

    ADS  CAS  PubMed  Google Scholar 

  87. 87

    Heller, I. et al. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137–142 (2005).

    ADS  CAS  PubMed  Google Scholar 

  88. 88

    Smith, S. L., Judy, J. W. & Otis, T. S. An ultra small array of electrodes for stimulating multiple inputs into a single neuron. J. Neurosci. Methods 133, 109–114 (2004).

    PubMed  Google Scholar 

  89. 89

    Fromherz, P. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue. Ann. NY Acad. Sci. 1093, 143–160 (2006).

    ADS  Google Scholar 

  90. 90

    Piccolino, M. & Bresadola, M. Drawing a spark from darkness: John Walsh and electric fish. Trends Neurosci. 25, 51–57 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).

    ADS  Google Scholar 

  92. 92

    Margrie, T. W. et al. Targeted whole-cell recordings in the mammalian brain in vivo . Neuron 39, 911–918 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo . Nature Methods 5, 61–67 (2008).

    CAS  Google Scholar 

  94. 94

    Liu, B. H. et al. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 29, 10520–10532 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Katzner, S. et al. Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Akemann, W., Lundby, A., Mutoh, H. & Knöpfel, T. Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophys. J. 96, 3959–3976 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Sabatini, B. L., Oertner, T. G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    CAS  PubMed  Google Scholar 

  98. 98

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods (in the press).

  99. 99

    Peterlin, Z. A., Kozloski, J., Mao, B. Q., Tsiola, A. & Yuste, R. Optical probing of neuronal circuits with calcium indicators. Proc. Natl Acad. Sci. USA 97, 3619–3624 (2000).

    ADS  CAS  PubMed  Google Scholar 

  100. 100

    Aaron, G. & Yuste, R. Reverse optical probing (ROPING) of neocortical circuits. Synapse 60, 437–440 (2006).

    CAS  PubMed  Google Scholar 

Download references


We are grateful to T. Branco, S. J. Caddick, M. Carandini, B. Clark, W. Denk, D. Kleinfeld, J. Isaacson, B. Judkewitz, R. Malinow, R. Morris, A. Roth, S. J. Smith, S. L. Smith, K. Svoboda and C. Wilms for helpful discussions and/or comments on the manuscript. We apologize to our colleagues whose work could not be cited owing to space constraints. Work in our laboratories is supported by grants from the Howard Hughes Medical Institute and the US National Institutes of Health (M.S.); and the Wellcome Trust, the European Union and the Gatsby Charitable Foundation (M.H.).

Author information



Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at The authors declare no competing financial interests. Correspondence should be addressed to M.S. ( or M.H. (

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scanziani, M., Häusser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing