Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reverse engineering the mouse brain

Abstract

Behaviour is governed by activity in highly structured neural circuits. Genetically targeted sensors and switches facilitate measurement and manipulation of activity in vivo, linking activity in defined nodes of neural circuits to behaviour. Because of access to specific cell types, these molecular tools will have the largest impact in genetic model systems such as the mouse. Emerging assays of mouse behaviour are beginning to rival those of behaving monkeys in terms of stimulus and behavioural control. We predict that the confluence of new behavioural and molecular tools in the mouse will reveal the logic of complex mammalian circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major excitatory pathways in the mouse somatosensory cortex and genetic access to the cell types.
Figure 2: Monitoring the activity of large neuronal populations with a genetically encoded calcium indicator.
Figure 3: Tactile object localization in the head-fixed mouse.
Figure 4: Manipulating groups of neurons on the basis of their response type.

Similar content being viewed by others

References

  1. Masland, R. H. Neuronal cell types. Curr. Biol. 14, R497–R500 (2004).

    Article  CAS  Google Scholar 

  2. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    Article  CAS  Google Scholar 

  3. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  Google Scholar 

  4. Thomson, A. M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    Article  CAS  Google Scholar 

  5. Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  Google Scholar 

  6. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    Article  CAS  Google Scholar 

  7. Weiler, N., Wood, L., Yu, J., Solla, S. A. & Shepherd, G. M. Top-down laminar organization of the excitatory network in motor cortex. Nature Neurosci. 11, 360–366 (2008).

    Article  CAS  Google Scholar 

  8. Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  Google Scholar 

  9. Yoshimura, Y., Dantzker, J. L. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    Article  ADS  CAS  Google Scholar 

  10. Evarts, E. V. Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27 (1968). This study pioneered the head-fixed, awake, behaving monkey preparation and cell-type-specific recording methods with the goal of relating the activity of pyramidal tract neurons to movement.

    Article  CAS  Google Scholar 

  11. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Wurtz, R. H. Visual cortex neurons: response to stimuli during rapid eye movements. Science 162, 1148–1150 (1968). This paper reports the training of monkeys to fixate a spot of light, introducing a powerful method of controlling sensory and motor variables in combination with electrophysiological recordings.

    Article  ADS  CAS  Google Scholar 

  13. Fujisawa, S., Amarasingham, A., Harrison, M. T. & Buzsaki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neurosci. 11, 823–833 (2008).

    Article  CAS  Google Scholar 

  14. Mountcastle, V. B. The parietal system and some higher brain functions. Cereb. Cortex 5, 377–390 (1995).

    Article  CAS  Google Scholar 

  15. Murphy, B. K. & Miller, K. D. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61, 635–648 (2009).

    Article  CAS  Google Scholar 

  16. Wang, X. J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).

    Article  CAS  Google Scholar 

  17. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  18. Marom, S. et al. On the precarious path of reverse neuro-engineering. Front. Comput. Neurosci. 3, 5 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Hikosaka, O. & Wurtz, R. H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 53, 266–291 (1985).

    Article  CAS  Google Scholar 

  20. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990). This landmark study established causality between activity of directionally selective neurons in visual cortex and perceptual judgments of motion direction.

    Article  ADS  CAS  Google Scholar 

  21. Gray, P. A., Janczewski, W. A., Mellen, N., McCrimmon, D. R. & Feldman, J. L. Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nature Neurosci. 4, 927–930 (2001).

    Article  CAS  Google Scholar 

  22. Houweling, A. R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Article  ADS  CAS  Google Scholar 

  23. Siegel, R. M. & Callaway, E. M. Francis Crick's legacy for neuroscience: between the α and the Ω. PLoS Biol. 2, e419 (2004).

    Article  Google Scholar 

  24. Tsutsui, H., Karasawa, S., Okamura, Y. & Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nature Methods 5, 683–685 (2008).

    Article  CAS  Google Scholar 

  25. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods 5, 805–811 (2008).

    Article  CAS  Google Scholar 

  26. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  ADS  CAS  Google Scholar 

  27. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  28. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005). Reference 26 showed that ChR2 is a directly light-gated cation channel that can be used to depolarize mammalian cells. References 27 and 28 demonstrated that light can be used to impose precise patterns of action-potential trains on ChR2-expressing neurons.

    Article  ADS  CAS  Google Scholar 

  29. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008). This study used excitation of L2/3 pyramidal neurons by ChR2 to show that sparse activity in the neocortex could drive behaviour.

    Article  ADS  CAS  Google Scholar 

  30. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  ADS  CAS  Google Scholar 

  31. Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  ADS  CAS  Google Scholar 

  32. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  33. Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    Article  ADS  Google Scholar 

  34. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  Google Scholar 

  35. Tan, W. et al. Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nature Neurosci. 11, 538–540 (2008).

    Article  CAS  Google Scholar 

  36. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  37. Uchida, N., Kepecs, A. & Mainen, Z. F. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nature Rev. Neurosci. 7, 485–491 (2006).

    Article  CAS  Google Scholar 

  38. Bucan, M. & Abel, T. The mouse: genetics meets behaviour. Nature Rev. Genet. 3, 114–123 (2002).

    Article  CAS  Google Scholar 

  39. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  40. Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).

    Article  ADS  CAS  Google Scholar 

  41. Prusky, G. T., West, P. W. & Douglas, R. M. Behavioral assessment of visual acuity in mice and rats. Vision Res. 40, 2201–2209 (2000).

    Article  CAS  Google Scholar 

  42. Zeng, H. et al. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617–629 (2001).

    Article  CAS  Google Scholar 

  43. Boyden, E. S. & Raymond, J. L. Active reversal of motor memories reveals rules governing memory encoding. Neuron 39, 1031–1042 (2003).

    Article  CAS  Google Scholar 

  44. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007). References 43 and 44 showed that head-fixed mice perform relatively normal reflexive behaviours.

    Article  CAS  Google Scholar 

  45. Bodyak, N. & Slotnick, B. Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem. Senses 24, 637–645 (1999).

    Article  CAS  Google Scholar 

  46. Rinberg, D., Koulakov, A. & Gelperin, A. Speed-accuracy tradeoff in olfaction. Neuron 51, 351–358 (2006).

    Article  CAS  Google Scholar 

  47. Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D. & Ahissar, E. 'Where' and 'what' in the whisker sensorimotor system. Nature Rev. Neurosci. 9, 601–612 (2008).

    Article  CAS  Google Scholar 

  48. Knutsen, P. M., Pietr, M. & Ahissar, E. Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26, 8451–8464 (2006).

    Article  CAS  Google Scholar 

  49. Mehta, S. B., Whitmer, D., Figueroa, R., Williams, B. A. & Kleinfeld, D. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5, e15 (2007).

    Article  Google Scholar 

  50. Birdwell, J. A. et al. Biomechanical models for radial distance determination by the rat vibrissal system. J. Neurophysiol. 98, 2439–2455 (2007).

    Article  Google Scholar 

  51. Balleine, B. W., Liljeholm, M. & Ostlund, S. B. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res. 199, 43–52 (2009).

    Article  Google Scholar 

  52. Churchland, M. M., Yu, B. M., Sahani, M. & Shenoy, K. V. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17, 609–618 (2007).

    Article  CAS  Google Scholar 

  53. Curtis, J. C. & Kleinfeld, D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nature Neurosci. 12, 492–501 (2009).

    Article  CAS  Google Scholar 

  54. White, E. L. Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi-electron microscopic and degeneration study. J. Comp. Neurol. 181, 627–661 (1978).

    Article  CAS  Google Scholar 

  55. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  ADS  CAS  Google Scholar 

  56. Liao, G. Y. & Xu, B. Cre recombinase-mediated gene deletion in layer 4 of murine sensory cortical areas. Genesis 46, 289–293 (2008).

    Article  Google Scholar 

  57. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  ADS  Google Scholar 

  58. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  ADS  CAS  Google Scholar 

  59. Han, X. & Boyden, E. S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  ADS  Google Scholar 

  60. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).

    Article  ADS  CAS  Google Scholar 

  61. de Kock, C. P., Bruno, R. M., Spors, H. & Sakmann, B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  62. Li, C. Y., Poo, M. M. & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009).

    Article  ADS  CAS  Google Scholar 

  63. de Lafuente, V. & Romo, R. Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc. Natl Acad. Sci. USA 103, 14266–14271 (2006).

    Article  ADS  CAS  Google Scholar 

  64. Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005). This two-photon-calcium-imaging study in the rodent primary visual cortex showed that even neighbouring neurons can have highly different response types.

    Article  ADS  CAS  Google Scholar 

  65. Jadhav, S. P., Wolfe, J. & Feldman, D. E. Sparse temporal coding of elementary tactile features during active whisker sensation. Nature Neurosci. 12, 792–800 (2009).

    Article  CAS  Google Scholar 

  66. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  ADS  CAS  Google Scholar 

  67. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nature Neurosci. 8, 1698–1703 (2005).

    Article  CAS  Google Scholar 

  68. Fetz, E. E. Operant conditioning of cortical unit activity. Science 163, 955–958 (1969).

    Article  ADS  CAS  Google Scholar 

  69. Rickgauer, J. P. & Tank, D. W. Infrared two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl Acad. Sci. USA 106, 15025–15030 (2009).

    Article  ADS  CAS  Google Scholar 

  70. Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nature Neurosci. 12, 229–234 (2009).

    Article  CAS  Google Scholar 

  71. Papagiakoumou, E., de Sars, V., Oron, D. & Emiliani, V. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt. Express 16, 22039–22047 (2008).

    Article  ADS  CAS  Google Scholar 

  72. He, Q. et al. White collar-1, a DNA binding transcription factor and a light sensor. Science 297, 840–843 (2002).

    Article  ADS  CAS  Google Scholar 

  73. Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    Article  ADS  CAS  Google Scholar 

  74. Helmstaedter, M., Briggman, K. L. & Denk, W. 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol. 18, 633–641 (2008).

    Article  CAS  Google Scholar 

  75. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Boyden, G. Buzsaki, A. Hires, Z. Mainen, S. Peron, L. Petreanu, D. Rinberg and T. Sato for comments on the manuscript, and L. Tian and L. Looger for the genetically encoded calcium indicator (GCaMP3) used in Fig. 2.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to K.S. (svobodak@janelia.hhmi.org).

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, D., Huber, D. & Svoboda, K. Reverse engineering the mouse brain. Nature 461, 923–929 (2009). https://doi.org/10.1038/nature08539

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing