Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multimodal techniques for diagnosis and prognosis of Alzheimer's disease

Abstract

Alzheimer's disease affects millions of people around the world. Currently, there are no treatments that prevent or slow the disease. Like other neurodegenerative diseases, Alzheimer's disease is characterized by protein misfolding in the brain. This process and the associated brain damage begin years before the substantial neurodegeneration that accompanies dementia. Studies using new neuroimaging techniques and fluid biomarkers suggest that Alzheimer's disease pathology can be detected preclinically. These advances should allow the design of new clinical trials and early mechanism-based therapeutic intervention.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Biomarkers and Alzheimer's disease: proposed changes in biomarkers in relation to the time course of pathological and clinical stages.
Figure 2: Imaging biomarkers.
Figure 3: Fluid biomarkers.

References

  1. Alzheimer, A. About a peculiar disease of the cerebral cortex [translation]. Alzheimer Dis. Assoc. Disord. 1, 7–8 (1987).

    Google Scholar 

  2. Khachaturian, Z. S. Diagnosis of Alzheimer's disease. Arch. Neurol. 42, 1097–1105 (1985).

    Article  CAS  Google Scholar 

  3. Mirra, S. S. et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41, 479–486 (1991).

    Article  CAS  Google Scholar 

  4. Hyman, B. T. & Trojanowski, J. Q. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J. Neuropathol. Exp. Neurol. 56, 1095–1097 (1997).

    Article  CAS  Google Scholar 

  5. Crystal, H. et al. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease. Neurology 38, 1682–1687 (1988).

    Article  CAS  Google Scholar 

  6. Price, J. L. et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol. Aging 30, 1026–1036 (2009).

    Article  Google Scholar 

  7. Braak, H. & Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18, 351–357 (1997).

    Article  CAS  Google Scholar 

  8. Evans, D. A. et al. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. J. Am. Med. Assoc. 262, 2551–2556 (1989).

    Article  CAS  Google Scholar 

  9. Morris, J. C. & Price, J. L. Pathologic correlates of nondemented aging, mild cognitive impairment, and early stage Alzheimer's disease. J. Mol. Neurosci. 17, 101–118 (2001).

    Article  CAS  Google Scholar 

  10. Gomez-Isla, T. et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J. Neurosci. 16, 4491–4500 (1996).

    Article  CAS  Google Scholar 

  11. Hardy, J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  ADS  CAS  Google Scholar 

  12. Morris, J. C. The clinical dementia rating (CDR). Current version and scoring rules. Neurology 43, 2412–2414 (1993).

    Article  CAS  Google Scholar 

  13. Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).

    Article  CAS  Google Scholar 

  14. Fox, N., Warrington, E. & Rossor, M. Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer's disease. Lancet 353, 2125 (1999). This paper reports how 5 of 28 cognitively normal individuals at risk of autosomal-dominant early-onset Alzheimer's disease developed “probable Alzheimer's disease” and could be distinguished by a mean rate of global cerebral atrophy of 1.5% per year from clinically stable subjects with a rate of 0.1% to 0.2% per year.

    Article  CAS  Google Scholar 

  15. Carlson, N. E. et al. Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 70, 828–833 (2008).

    Article  CAS  Google Scholar 

  16. Devanand, D. P. et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68, 828–836 (2007).

    Article  CAS  Google Scholar 

  17. Small, G. W. et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355, 2652–2663 (2006).

    Article  CAS  Google Scholar 

  18. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004). This first study of the tracer compound PIB in humans describes both the retention of PIB in areas of Alzheimer's-disease-affected brains known to contain amyloid and an inverse relationship between the PIB PET signal and cerebral glucose metabolism, measured by fluorodeoxyglucose PET.

    Article  CAS  Google Scholar 

  19. Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446–452 (2006).

    Article  CAS  Google Scholar 

  20. Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and CSF Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006). This study illustrates an inverse relationship between mean cortical retention of PIB and cerebrospinal-fluid A β 42 concentrations among both demented and non-demented subjects, suggesting that brain amyloid deposition results in low cerebrospinal-fluid A β 42 and that amyloid imaging and cerebrospinal-fluid A β 42 might serve as antecedent biomarkers of preclinical Alzheimer's disease.

    Article  CAS  Google Scholar 

  21. Morris J. C. et al. PIB imaging predicts progression to symptomatic Alzheimer's disease. Arch. Neurol. (in the press).

  22. Zhang, M. R. et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J. Med. Chem. 47, 2228–2235 (2004).

    Article  CAS  Google Scholar 

  23. Vas, A. et al. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients. J. Neurol. Sci. 264, 9–17 (2008).

    Article  CAS  Google Scholar 

  24. Edison, P. et al. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol. Dis. 32, 412–419 (2008).

    Article  CAS  Google Scholar 

  25. Nakamura, S. et al. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol. 80, 419–425 (1990).

    Article  CAS  Google Scholar 

  26. Hirvonen, J. et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin. Pharmacol. Ther. 85, 506–512 (2009).

    Article  CAS  Google Scholar 

  27. Dickerson, B. C. & Sperling, R. A. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies. Neuropsychologia 46, 1624–1635 (2008).

    Article  Google Scholar 

  28. Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005). In this paper, five in vivo neuroimaging methods are used to illustrate the similarities among the anatomical distributions of atrophy, reduced glucose metabolism and amyloid deposits seen in Alzheimer's disease, and of the default network, suggesting that young-adult brain activity and metabolism patterns may be conducive to cortical amyloid deposition.

    Article  CAS  Google Scholar 

  29. Hirao, K. et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28, 1014–1021 (2005).

    Article  Google Scholar 

  30. de Leon, M. J. et al. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc. Natl Acad. Sci. USA 98, 10966–10971 (2001).

    Article  ADS  CAS  Google Scholar 

  31. Chetelat, G. et al. Mild cognitive impairment — can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology 60, 1374–1377 (2003).

    Article  CAS  Google Scholar 

  32. Kadir, A. et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease. Ann. Neurol. 63, 621–631 (2008).

    Article  CAS  Google Scholar 

  33. Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nature Rev. Neurosci. 2, 685–694 (2001).

    Article  CAS  Google Scholar 

  34. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    Article  ADS  Google Scholar 

  35. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  Google Scholar 

  36. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo . Neuron 48, 913–922 (2005).

    Article  CAS  Google Scholar 

  37. Brody, D. L. et al. Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321, 1221–1224 (2008).

    Article  ADS  CAS  Google Scholar 

  38. Motter, R. et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Ann. Neurol. 38, 643–648 (1995).

    Article  CAS  Google Scholar 

  39. Fagan, A. M. et al. Decreased cerebrospinal fluid Aβ42 correlates with brain atrophy in cognitively normal elderly. Ann. Neurol. 65, 176–183 (2009).

    Article  CAS  Google Scholar 

  40. Tapiola, T. et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 66, 382–389 (2009).

    Article  Google Scholar 

  41. Fagan, A. M. et al. Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 64, 343–349 (2007).

    Article  Google Scholar 

  42. Hansson, O. et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5, 228–234 (2006). This report illustrates the utility of cerebrospinal-fluid biomarkers A β 42 , tau and phosphorylated tau in predicting the progression of patients from mild cognitive impairment to dementia attributed clinically to Alzheimer's disease.

    Article  CAS  Google Scholar 

  43. Li, G. et al. CSF tau/Aβ42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 69, 631–639 (2007).

    Article  CAS  Google Scholar 

  44. Cairns, N. J. et al. PiB-PET detection of cerebral Aβ may lag clinical, cognitive, and CSF markers of Alzheimer's disease: a case report. Arch. Neurol. (in the press).

  45. Mehta, P. D., Pirttila, T., Patrick, B., Barshatzky, M. & Mehta, S. Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett. 304, 102–106 (2001).

    Article  CAS  Google Scholar 

  46. Vanderstichele, H. et al. Standardization of measurement of β-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid 7, 245–258 (2000).

    Article  CAS  Google Scholar 

  47. Graff-Radford, N. R. et al. Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol. 64, 354–362 (2007).

    Article  Google Scholar 

  48. Mayeux, R. et al. Plasma amyloid β-peptide 1–42 and incipient Alzheimer's disease. Ann. Neurol. 46, 412–416 (1999).

    Article  CAS  Google Scholar 

  49. Portelius, E. et al. Characterization of tau in cerebrospinal fluid using mass spectrometry. J. Proteome Res. 7, 2114–2120 (2008).

    Article  CAS  Google Scholar 

  50. Vandermeeren, M. et al. Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbant assay. J. Neurochem. 61, 1828–1834 (1993).

    Article  CAS  Google Scholar 

  51. Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008).

    Article  ADS  CAS  Google Scholar 

  52. Montine, T. J. et al. The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer's disease patients. Am. J. Pathol. 155, 863–868 (1999).

    Article  CAS  Google Scholar 

  53. Praticò, D., Lee, M.-Y.V., Trojanowski, J. Q., Rokach, J. & Fitzgerald, G. A. Increased F2-isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo . FASEB J. 12, 1777–1783 (1998).

    Article  Google Scholar 

  54. de Leon, M. J. et al. Longitudinal CSF isoprostane and MRI atrophy in the progression to Alzheimer's disease. J. Neurol. 254, 1666–1675 (2007).

    Article  CAS  Google Scholar 

  55. Pratico, D. et al. Increased 8,12-iso-iPF2α-VI in Alzheimer's disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol. 48, 809–812 (2000).

    Article  CAS  Google Scholar 

  56. Montine, T. J. et al. No difference in plasma or urinary F2-isoprostanes among patients with Huntington's disease or Alzheimer's disease and controls. Ann. Neurol. 48, 950 (2000).

    Article  CAS  Google Scholar 

  57. Abe, T., Tohgi, H., Isobe, C., Murata, T. & Sato, C. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease. J. Neurosci. Res. 70, 447–450 (2002).

    Article  CAS  Google Scholar 

  58. Abraham, C. R., Selkoe, D. J. & Potter, H. Immunochemical identification of the serine protease inhibitor α1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 52, 487–501 (1988).

    Article  CAS  Google Scholar 

  59. Thal, D. R., Schober, R. & Birkenmeier, G. The subunits of α2-macroglobulin receptor/low density lipoprotein receptor-related protein, native and transformed α2-macroglobulin and interleukin 6 in Alzheimer's disease. Brain Res. 777, 223–227 (1997).

    Article  CAS  Google Scholar 

  60. Zanjani, H. et al. Complement activation in very early Alzheimer disease. Alzheimer Dis. Assoc. Disord. 19, 55–66 (2005).

    Article  CAS  Google Scholar 

  61. DeKosky, S. T. et al. Plasma and cerebrospinal fluid α1-antichymotrypsin levels in Alzheimer's disease: correlation with cognitive impairment. Ann. Neurol. 53, 81–90 (2003).

    Article  CAS  Google Scholar 

  62. Hye, A. et al. Proteome-based plasma biomarkers for Alzheimer's disease. Brain 129, 3042–3050 (2006).

    Article  CAS  Google Scholar 

  63. Hu, Y. et al. Identification and validation of novel CSF biomarkers for early stages of Alzheimer's disease. Proteomics Clin. Appl. 1, 1373–1384 (2007).

    Article  CAS  Google Scholar 

  64. Thambisetty, M. et al. Proteome-based identification of plasma proteins associated with hippocampal metabolism in early Alzheimer's disease. J. Neurol. 255, 1712–1720 (2008).

    Article  CAS  Google Scholar 

  65. Smyth, M. D. et al. Decreased levels of C1q in cerebrospinal fluid of living Alzheimer patients correlate with disease state. Neurobiol. Aging 15, 609–614 (1994).

    Article  CAS  Google Scholar 

  66. Loeffler, D. A. et al. Cerebrospinal fluid C3a increases with age, but does not increase further in Alzheimer's disease. Neurobiol. Aging 18, 555–557 (1997).

    Article  CAS  Google Scholar 

  67. Tan, Z. S. et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham study. Neurology 68, 1902–1908 (2007).

    Article  CAS  Google Scholar 

  68. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  Google Scholar 

  69. Guerreiro, R. J. et al. Peripheral inflammatory cytokines as biomarkers in Alzheimer's disease and mild cognitive impairment. Neurodegener. Dis. 4, 406–412 (2007).

    Article  CAS  Google Scholar 

  70. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med. 13, 1359–1362 (2007). This paper identified a panel of 18 signalling proteins in blood plasma that might be used to predict and diagnose early Alzheimer's disease. This work illustrates the potential of 'unbiased' screening of multiple analytes in biological fluids to identify early diagnostic and prognostic biomarkers for Alzheimer's disease.

    Article  CAS  Google Scholar 

  71. Davidsson, P. et al. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13, 611–615 (2002).

    Article  CAS  Google Scholar 

  72. Zhang, J. et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimer's Dis. 7, 125–133; discussion 173–180 (2005).

    Article  CAS  Google Scholar 

  73. Finehout, E. J., Franck, Z., Choe, L. H., Relkin, N. & Lee, K. H. Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease. Ann. Neurol. 61, 120–129 (2007).

    Article  CAS  Google Scholar 

  74. Bateman, R. J. et al. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo . Nature Med. 12, 856–861 (2006). This report uses amyloid- β peptide species as an example to describe a novel technique that will facilitate the evaluation of disease-modifying treatments for Alzheimer's disease by measuring the production and clearance rates of proteins in the human central nervous system, following administration of a non-radioactive isotopically labelled amino acid (in this case leucine).

    Article  CAS  Google Scholar 

  75. Bateman, R. J. et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66, 48–54 (2009).

    Article  CAS  Google Scholar 

  76. Kauwe, J. S. et al. Alzheimer's disease risk variants show association with cerebrospinal fluid amyloid beta. Neurogenetics 10, 13–17 (2009).

    Article  CAS  Google Scholar 

  77. Craig-Schapiro, R., Fagan, A. M. & Holtzman, D. M. Biomarkers of Alzheimer's disease. Neurobiol. Dis. 35, 128–140 (2009).

    Article  CAS  Google Scholar 

  78. Sunderland, T. et al. Decreased β-amyloid1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. J. Am. Med. Assoc. 289, 2094–2103 (2003).

    Article  Google Scholar 

  79. Welsh-Bohmer, K. A. & Johnson, S. in Handbook of Dementing Illnesses 2nd edn (eds Morris, J. C., Galvin, J. E. & Holtzman, D. M.) 59–87 (Taylor & Francis, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank J. Cirrito and MedPIC, the art and design centre at Washington University School of Medicine, for assistance with graphic design. Work in the authors' laboratories was supported by US National Institutes of Health grants P01–AG026276, PO1–AG03991, P50AG00568125 and T32NS007205.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Competing interests: D.M.H. is a co-founder of C2N Diagnostics, which focuses on biomarkers for neurodegenerative disease.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to D.M.H. (holtzman@neuro.wustl.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perrin, R., Fagan, A. & Holtzman, D. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461, 916–922 (2009). https://doi.org/10.1038/nature08538

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08538

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing