Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response


The mucosal immune system forms the largest part of the entire immune system, containing about three-quarters of all lymphocytes and producing grams of secretory IgA daily to protect the mucosal surface from pathogens1,2,3. To evoke the mucosal immune response, antigens on the mucosal surface must be transported across the epithelial barrier into organized lymphoid structures such as Peyer’s patches4. This function, called antigen transcytosis, is mediated by specialized epithelial M cells5,6. The molecular mechanisms promoting this antigen uptake, however, are largely unknown. Here we report that glycoprotein 2 (GP2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for mucosal antigens. Recombinant GP2 protein selectively bound a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane. Consistently, these bacteria were colocalized with endogenous GP2 on the apical plasma membrane as well as in cytoplasmic vesicles in M cells. Moreover, deficiency of bacterial FimH or host GP2 led to defects in transcytosis of type-I-piliated bacteria through M cells, resulting in an attenuation of antigen-specific immune responses in Peyer’s patches. GP2 is therefore a previously unrecognized transcytotic receptor on M cells for type-I-piliated bacteria and is a prerequisite for the mucosal immune response to these bacteria. Given that M cells are considered a promising target for oral vaccination against various infectious diseases7,8, the GP2-dependent transcytotic pathway could provide a new target for the development of M-cell-targeted mucosal vaccines.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: In the intestine, GP2 is exclusively expressed by mouse and human M cells.
Figure 2: GP2 binds to FimH-expressing Gram-negative bacteria.
Figure 3: GP2 is important for the induction of an antigen-specific mucosal immune response.
Figure 4: Bacterial translocation into Peyer’s patches and subsequent antigen-specific mucosal immune response markedly decreased in FimH-deficinet Salmonella.


  1. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008)

    Article  CAS  Google Scholar 

  2. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007)

    Article  CAS  Google Scholar 

  4. Craig, S. W. & Cebra, J. J. Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134, 188–200 (1971)

    Article  CAS  Google Scholar 

  5. Owen, R. L. & Jones, A. L. Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66, 189–203 (1974)

    Article  CAS  Google Scholar 

  6. Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J. P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nature Immunol. 2, 1004–1009 (2001)

    Article  CAS  Google Scholar 

  7. Nochi, T. et al. A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204, 2789–2796 (2007)

    Article  CAS  Google Scholar 

  8. Sirard, J. C., Niedergang, F. & Kraehenbuhl, J. P. Live attenuated Salmonella: a paradigm of mucosal vaccines. Immunol. Rev. 171, 5–26 (1999)

    Article  CAS  Google Scholar 

  9. Sansonetti, P. J. & Phalipon, A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin. Immunol. 11, 193–203 (1999)

    Article  CAS  Google Scholar 

  10. Kraehenbuhl, J. P. & Neutra, M. R. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–332 (2000)

    Article  CAS  Google Scholar 

  11. Hase, K. et al. Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium and M cells. DNA Res. 12, 127–137 (2005)

    Article  CAS  Google Scholar 

  12. Terahara, K. et al. Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008)

    Article  CAS  Google Scholar 

  13. Hoops, T. C. & Rindler, M. J. Isolation of the cDNA encoding glycoprotein-2 (GP-2), the major zymogen granule membrane protein. Homology to uromodulin/Tamm–Horsfall protein. J. Biol. Chem. 266, 4257–4263 (1991)

    CAS  PubMed  Google Scholar 

  14. Verbrugghe, P., Kujala, P., Waelput, W., Peters, P. J. & Cuvelier, C. A. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells. Histochem. Cell Biol. 129, 311–320 (2008)

    Article  CAS  Google Scholar 

  15. Fukuoka, S., Freedman, S. D., Yu, H., Sukhatme, V. P. & Scheele, G. A. GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney. Proc. Natl Acad. Sci. USA 89, 1189–1193 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Mo, L. et al. Ablation of the Tamm–Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Renal Physiol. 286, F795–F802 (2004)

    Article  CAS  Google Scholar 

  17. Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006)

    Article  CAS  Google Scholar 

  18. Yu, S. & Lowe, A. W. The pancreatic zymogen granule membrane protein, GP2, binds Escherichia coli type 1 fimbriae. BMC Gastroenterol. 9, 58 (2009)

    Article  Google Scholar 

  19. Ewen, S. W. et al. Salmonella enterica var Typhimurium and Salmonella enterica var Enteritidis express type 1 fimbriae in the rat in vivo. FEMS Immunol. Med. Microbiol. 18, 185–192 (1997)

    Article  CAS  Google Scholar 

  20. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science 300, 1295–1297 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Tanaka, Y. et al. T helper type 2 differentiation and intracellular trafficking of the interleukin 4 receptor-α subunit controlled by the Rac activator Dock2. Nature Immunol. 8, 1067–1075 (2007)

    Article  CAS  Google Scholar 

  22. Clark, M. A., Hirst, B. H. & Jepson, M. A. M-cell surface β1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect. Immun. 66, 1237–1243 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwasaki, A. & Kelsall, B. L. Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1394 (2000)

    Article  CAS  Google Scholar 

  24. VanCott, J. L. et al. Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J. Immunol. 156, 1504–1514 (1996)

    CAS  PubMed  Google Scholar 

  25. Martinoli, C., Chiavelli, A. & Rescigno, M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27, 975–984 (2007)

    Article  CAS  Google Scholar 

  26. Hashizume, T. et al. Peyer’s patches are required for intestinal immunoglobulin A responses to Salmonella spp. Infect. Immun. 76, 927–934 (2008)

    Article  CAS  Google Scholar 

  27. Rindler, M. J. & Hoops, T. C. The pancreatic membrane protein GP-2 localizes specifically to secretory granules and is shed into the pancreatic juice as a protein aggregate. Eur. J. Cell Biol. 53, 154–163 (1990)

    CAS  PubMed  Google Scholar 

  28. Kobayashi, K., Yanagihara, K., Ishiguro, K. & Fukuoka, S. GP2/THP gene family of self-binding, GPI-anchored proteins forms a cluster at chromosome 7F1 region in mouse genome. Biochem. Biophys. Res. Commun. 322, 659–664 (2004)

    Article  CAS  Google Scholar 

  29. Yu, S., Michie, S. A. & Lowe, A. W. Absence of the major zymogen granule membrane protein, GP2, does not affect pancreatic morphology or secretion. J. Biol. Chem. 279, 50274–50279 (2004)

    Article  CAS  Google Scholar 

  30. Greisen, K., Loeffelholz, M., Purohit, A. & Leong, D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol. 32, 335–351 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hase, K. et al. The membrane-bound chemokine CXCL16 expressed on follicle-associated epithelium and M cells mediates lympho-epithelial interaction in GALT. J. Immunol. 176, 43–51 (2006)

    Article  CAS  Google Scholar 

  32. Waguri, S. & Komatsu, M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol. 453, 181–196 (2009)

    Article  CAS  Google Scholar 

  33. Hopkins, S. A., Niedergang, F., Corthesy-Theulaz, I. E. & Kraehenbuhl, J. P. A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer’s patch dendritic cells. Cell. Microbiol. 2, 59–68 (2000)

    Article  CAS  Google Scholar 

  34. Herring, C. D., Glasner, J. D. & Blattner, F. R. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311, 153–163 (2003)

    Article  CAS  Google Scholar 

  35. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Jackson, R. J. et al. Optimizing oral vaccines: induction of systemic and mucosal B-cell and antibody responses to tetanus toxoid by use of cholera toxin as an adjuvant. Infect. Immun. 61, 4272–4279 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamamoto, M. et al. Alternate mucosal immune system: organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164, 5184–5191 (2000)

    Article  CAS  Google Scholar 

  38. Gulig, P. A., Doyle, T. J., Hughes, J. A. & Matsui, H. Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect. Immun. 66, 2471–2485 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Carter, P. B. & Collins, F. M. Experimental Yersinia enterocolitica infection in mice: kinetics of growth. Infect. Immun. 9, 851–857 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank K. Kanno and A. Yamada for help in immunoelectron microscopy; Y. Yamada for secretarial assistance; M. Ohmae for technical assistance; H. Watarai for pertinent advice and discussion; P. D. Burrows, T. Takemori, S. Yamasaki and H. Kitamura for critical review of the manuscript; and the National BioResource Project (NIG, Japan) for E. coli (the Keio collection). This study was supported in part by Grants-in-Aid for Young Scientists (B) (K.H.), Scientific research (B) (H.O.), Scientific Research in Priority Areas (H.O. and K.H.), and Scientific Research on Innovative Areas (H.O.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Takeda Science Foundation (K.H.), and NIH awards DK56339 and DK43294 (A.W.L.).

Author Contributions K. Hase and K. Kawano designed and performed the experiments, analysed the data and wrote the manuscript. T.N., G.S.P., S.F., M.E., K. Kadokura, Y.F., S. Kawano, A.Y., G.N., S. Kimura, M.I., K. Hamura, S.W. and H.K. contributed to the experimental work, and T.M. helped in data analysis. T.T. developed the FimH-deficient strain of rSalmonella-ToxC. K.I. prepared bacteria. S-I.F. and A.W.L. provided GP2-deficient mice. H.O. supervised the project and made significant contributions to the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hiroshi Ohno.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with Legends and Legends for Supplementary Movies 1-4. (PDF 2084 kb)

Supplementary Movie 1

This movie shows a three-dimensional image of M cells taking up anti-mouse GP2 mAb in the ligated intestinal loop assay (see file s1 for full Legend). (MPG 1908 kb)

Supplementary Movie 2

The movie shows the visualization of an M cell taking up E. coli (see file s1 for full Legend). (MPG 1771 kb)

Supplementary Movie 3

This movie shows the transcytosis of S. Typhimurium by an M cell (see file s1 for full Legend). (MPG 974 kb)

Supplementary Movie 4

This movie shows the transport of E. coli from an M cell to underlying DC (see file s1 for full Legend). (MPG 494 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hase, K., Kawano, K., Nochi, T. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing