Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant

Abstract

The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars1. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others2,3,4, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers5,6 and also identifies the compact source as a very young (330-year-old) neutron star.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Chandra X-ray spectra of Cas A.
Figure 2: Model atmosphere spectra.
Figure 3: Neutron star mass and radius.

References

  1. Pavlov, G. G., Zavlin, V. E. & Sanwal, D. in Proc. WE-Heraeus Seminar: Neutron Stars, Pulsars and Supernova Remnants (eds Becker, W., Lesch, H., & Trümper, J.) Vol. 270 273–286 (MPE Report 278, MPI, 2002)

    Google Scholar 

  2. Pavlov, G. G., Zavlin, V. E., Aschenbach, B., Trümper, J. & Sanwal, D. The compact central object in Cassiopeia A: a neutron star with hot polar caps or a black hole? Astrophys. J. 531, L53–L56 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Chakrabarty, D., Pivovaroff, M. J., Hernquist, L. E., Heyl, J. S. & Narayan, R. The central X-ray point source in Cassiopeia A. Astrophys. J. 548, 800–810 (2001)

    Article  ADS  Google Scholar 

  4. Pavlov, G. G. & Luna, G. J. M. A dedicated Chandra ACIS observation of the central compact object in the Cassiopeia A supernova remnant. Astrophys. J. 703, 910–921 (2009)

    Article  ADS  Google Scholar 

  5. Rosen, L. C. Hydrogen and helium abundances in neutron-star atmospheres. Astrophys. Space Sci. 1, 372–387 (1968)

    Article  ADS  Google Scholar 

  6. Chang, P. & Bildsten, L. Evolution of young neutron star envelopes. Astrophys. J. 605, 830–839 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Reed, J. E., Hester, J. J., Fabian, A. C. & Winkler, P. F. The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706–721 (1995)

    Article  ADS  Google Scholar 

  8. Ashworth, W. B. A probable Flamsteed observation of the Cassiopeia A supernova. J. Hist. Astron. 11, 1–9 (1980)

    Article  ADS  Google Scholar 

  9. Fesen, R. A. et al. The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys. J. 645, 283–292 (2006)

    Article  ADS  Google Scholar 

  10. Tananbaum, H. Cassiopeia A. IAU Circ. 7246, (1999)

  11. Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A. & Ricker, G. R. Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory. Proc. SPIE 4851, 28–44 (2003)

    Article  ADS  Google Scholar 

  12. Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. 615, L117–L120 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Heinke, C. O., Rybicki, G. B., Narayan, R. & Grindlay, J. E. A hydrogen atmosphere spectral model applied to the neutron star X7 in the globular cluster 47 Tucanae. Astrophys. J. 644, 1090–1103 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Lattimer, J. M. & Prakash, M. Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442, 109–165 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Murray, S. S., Ransom, S. M., Juda, M., Hwang, U. & Holt, S. S. Is the compact source at the center of Cassiopeia A pulsed? Astrophys. J. 566, 1039–1044 (2002)

    Article  ADS  Google Scholar 

  16. Greenstein, G. & Hartke, G. J. Pulselike character of blackbody radiation from neutron stars. Astrophys. J. 271, 283–293 (1983)

    Article  ADS  CAS  Google Scholar 

  17. Yakovlev, D. G. & Pethick, C. J. Neutron star cooling. Annu. Rev. Astron. Astrophys. 42, 169–210 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Page, D., Geppert, U. & Weber, F. The cooling of compact stars. Nucl. Phys. A 777, 497–530 (2006)

    Article  ADS  Google Scholar 

  19. Tsuruta, S. et al. Thermal evolution of hyperon-mixed neutron stars. Astrophys. J. 691, 621–632 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Gotthelf, E. V. & Halpern, J. P. Discovery of a 112 ms X-ray pulsar in Puppis A: further evidence of neutron stars weakly magnetized at birth. Astrophys. J. 695, L35–L39 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Muslimov, A. & Page, D. Delayed switch-on of pulsars. Astrophys. J. 440, L77–L80 (1995)

    Article  ADS  Google Scholar 

  23. Predehl, P., Costantini, E., Hasinger, G. & Tanaka, Y. XMM-Newton observation of the galactic centre—evidence against the X-ray reflection nebulae model? Astron. Nachr. 324, 73–76 (2003)

    Article  ADS  Google Scholar 

  24. Davis, J. E. Event pileup in charge-coupled devices. Astrophys. J. 562, 575–582 (2001)

    Article  ADS  Google Scholar 

  25. Alcock, C. & Illarionov, A. Surface chemistry of stars. I. Diffusion of heavy ions in white dwarf envelopes. Astrophys. J. 235, 534–540 (1980)

    Article  ADS  CAS  Google Scholar 

  26. The Opacity Project Team. The Opacity Projecthttp://cdsweb.u-strasbg.fr/topbase/op.html〉 (2009)

  27. Rajagopal, M. & Romani, R. W. Model atmospheres for low-field neutron stars. Astrophys. J. 461, 327–333 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Zavlin, V. E., Pavlov, G. G. & Shibanov, Yu. A. Model neutron star atmospheres with low magnetic fields. Astron. Astrophys. 315, 141–152 (1996)

    ADS  CAS  Google Scholar 

  29. Ho, W. C. G. & Lai, D. Atmospheres and spectra of strongly magnetized neutron stars. Mon. Not. R. Astron. Soc. 327, 1081–1096 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Mori, K. & Ho, W. C. G. Modelling mid-Z element atmospheres for strongly magnetized neutron stars. Mon. Not. R. Astron. Soc. 377, 905–919 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

W.C.G.H. thanks N. Badnell, P. Chang, and D. Lai for discussions. W.C.G.H. appreciates the use of the computer facilities at the Kavli Institute for Particle Astrophysics and Cosmology. W.C.G.H. acknowledges support from the Science and Technology Facilities Council (STFC) in the United Kingdom. C.O.H. acknowledges support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author Contributions W.C.G.H. calculated the new models and wrote the manuscript. C.O.H. reduced the data, fitted the models to the data, and contributed to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wynn C. G. Ho or Craig O. Heinke.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ho, W., Heinke, C. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Nature 462, 71–73 (2009). https://doi.org/10.1038/nature08525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08525

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing