Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies

Abstract

The transport of warm and salty Indian Ocean waters into the Atlantic Ocean—the Agulhas leakage—has a crucial role in the global oceanic circulation1 and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC)2. There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages3 and model studies4 that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies5. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing6, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model7,8 to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification9 of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Large-scale circulation changes south of Africa.
Figure 2: Thermocline changes in the Southern Hemisphere.
Figure 3: Increase of Agulhas leakage.
Figure 4: Inter-annual to decadal variability in the Agulhas Current.
Figure 5: Pathways of the Agulhas leakage into the North Atlantic.

References

  1. 1

    Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986)

    ADS  Article  Google Scholar 

  2. 2

    Friocourt, Y., Drijfhout, S., Blanke, B. & Speich, S. Water mass export from Drake Passage to the Atlantic, Indian, and Pacific oceans: a Lagrangian model analysis. J. Phys. Oceanogr. 35, 1206–1222 (2005)

    ADS  Article  Google Scholar 

  3. 3

    Peeters, F. J. C. et al. Vigorous exchange between Indian and Atlantic Ocean at the end of the last five glacial periods. Nature 400, 661–665 (2004)

    ADS  Article  Google Scholar 

  4. 4

    Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bard, E. & Rickaby, R. E. M. Migration of the subtropical front as a modulator of glacial climate. Nature 460, 380–383 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Cai, W. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett. 33, L03712 (2006)

    ADS  Google Scholar 

  7. 7

    Biastoch, A., Böning, C. W. & Lutjeharms, J. R. E. Agulhas leakage dynamics affects decadal variability in atlantic overturning circulation. Nature 456, 489–492 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Biastoch, A., Lutjeharms, J. R. E., Böning, C. W. & Scheinert, M. Mesoscale perturbations control inter-ocean exchange south of Africa. Geophys. Res. Lett. 35, L20602 (2008)

    ADS  Article  Google Scholar 

  9. 9

    Curry, R. & Mauritzen, C. Dilution of the northern North Atlantic Ocean in recent decades. Science 308, 1772–1774 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Lutjeharms, J. R. E. The Agulhas Current (Springer, 2006)

    Google Scholar 

  11. 11

    De Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W. & Veth, C. Observations of the flow in the Mozambique Channel. Geophys. Res. Lett. 29, 140–141 (2002)

    Article  Google Scholar 

  12. 12

    Weijer, W., de Ruijter, W. P. M., Sterl, A. & Drijfhout, S. S. Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Glob. Planet. Change 34, 293–311 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Speich, S., Blanke, B. & Cai, W. Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys. Res. Lett. 34, L23614 (2007)

    ADS  Article  Google Scholar 

  14. 14

    Sen Gupta, A. et al. Projected changes to the Southern Hemisphere ocean and sea-ice in the IPCC AR4 climate models. J. Clim. 22, 3047–3078 (2009)

    ADS  Article  Google Scholar 

  15. 15

    Biastoch, A., Beal, L. M., Casal, T. G. D. & Lutjeharms, J. R. E. Variability and coherence of the Agulhas Undercurrent in a high-resolution ocean general circulation model. J. Phys. Oceanogr. 39, 2417–2435 (2009)

    ADS  Article  Google Scholar 

  16. 16

    Large, W. G. & Yeager, S. G. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: the Data Sets and Flux Climatologies. (NCAR Technical Note NCAR/TN-460+STR, 2004)

    Google Scholar 

  17. 17

    Alory, G., Wijffels, S. & Meyers, G. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett. 34, L02606 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Rouault, M., Penven, P. & Pohl, B. Warming in the Agulhas Current system since the 1980s. Geophys. Res. Lett. 36, L12602 (2009)

    ADS  Article  Google Scholar 

  19. 19

    Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. & Schwarzkopf, F. V. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008)

    ADS  Article  Google Scholar 

  20. 20

    Swart, S. et al. Transport and variability of the Antarctic Circumpolar Current south of Africa. J. Geophys. Res. 113, C09014 (2008)

    ADS  Google Scholar 

  21. 21

    Blanke, B., Arhan, M., Madec, G. & Roche, S. Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model. J. Phys. Oceanogr. 29, 2753–2768 (1999)

    ADS  Article  Google Scholar 

  22. 22

    Van Sebille, E., Biastoch, A., van Leeuwen, P. J. & de Ruijter, W. P. M. A weaker Agulhas Current leads to more Agulhas leakage. Geophys. Res. Lett. 36, L03601 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Ridderinkhof, H. & De Ruijter, W. P. M. Moored current observations in the Mozambique Channel. Deep Sea Res. II 50, 1933–1955 (2003)

    ADS  Article  Google Scholar 

  24. 24

    Matano, R. P., Beier, E. J. & Strub, P. T. Large-scale forcing of the Agulhas variability: the seasonal cycle. J. Phys. Oceanogr. 32, 1228–1241 (2002)

    ADS  Article  Google Scholar 

  25. 25

    Ou, H. W. & de Ruijter, W. P. M. Separation of an inertial boundary current from a curved coastline. J. Phys. Oceanogr. 16, 280–289 (1986)

    ADS  Article  Google Scholar 

  26. 26

    Biastoch, A., Reason, C. J. C., Lutjeharms, J. R. E. & Boebel, O. The importance of flow in the Mozambique Channel to seasonality in the greater Agulhas Current system. Geophys. Res. Lett. 26, 3321–3324 (1999)

    ADS  Article  Google Scholar 

  27. 27

    Oke, P. & England, M. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim. 17, 1040–1054 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Meehl, G. et al. Global Climate Projections 747–846 (Cambridge Univ. Press, 2007)

    Google Scholar 

  29. 29

    Debreu, L., Vouland, C. & Blayo, E. AGRIF: Adaptive grid refinement in Fortran. Comput. Geosci. 34, 8–13 (2008)

    ADS  Article  Google Scholar 

  30. 30

    Madec, G. NEMO Ocean Engine. Technical Report 27 (Note du Pôle de Modélisation, Institut Pierre Simon Laplace, 2006)

    Google Scholar 

  31. 31

    Barnier, B. et al. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn. 56, 543–567 (2006)

    ADS  Article  Google Scholar 

  32. 32

    Zalesak, S. T. Fully multidimensional flux corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33

    Kalnay, E. et al. The NCEP/NCAR 40-years reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996)

    ADS  Article  Google Scholar 

  34. 34

    Griffies, S. et al. Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26, 1–46 (2009)

    ADS  Article  Google Scholar 

  35. 35

    Béranger, K., Barnier, B., Gulev, S. & Crépon, M. Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dyn. 56, 104–138 (2006)

    ADS  Article  Google Scholar 

  36. 36

    Latif, M. et al. Is the thermohaline circulation changing? J. Clim. 19, 4631–4637 (2006)

    ADS  Article  Google Scholar 

  37. 37

    Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M. & Madec, G. Causes of interannual-decadal variability in the meridional overturning circulation of the mid-latitude North Atlantic Ocean. J. Clim. 21, 6599–6615 (2008)

    ADS  Article  Google Scholar 

  38. 38

    Conkright, M. et al. World Ocean Database 2001 Vol. 1 Introduction 1–167 (NOAA Atlas NESDIS 42, US Government Printing Office 13, 2002)

    Google Scholar 

  39. 39

    Steele, M., Morfley, R. & Ermold, W. PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Clim. 14, 2079–2087 (2001)

    ADS  Article  Google Scholar 

  40. 40

    Ridgway, K., Dunn, J. & Wilkin, J. Ocean interpolation by four-dimensional weighted least squares: application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The integrations of the experiments have been performed at the Höchstleistungsrechenzentrum Stuttgart (HLRS) and the Computing Centre at Kiel University. We thank the NEMO, AGRIF and Ariane System Teams for their technical support. The analysis was supported by the DFG projects BO 907/2-2 and SFB 754 (TP A2, http://www.sfb754.de). J.R.E.L. received support from the International Bureau of the BMBF (SUA 07/004) and from the South African National Research Foundation.

Author Contributions A.B. and C.W.B. conceived the experimental concept. A.B. implemented and conducted the experiments, and carried out the analysis. F.U.S. performed the observational analysis. All authors discussed the results and jointly wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Biastoch.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S5 with Legends, Supplementary Table S1 and Supplementary References. (PDF 1202 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biastoch, A., Böning, C., Schwarzkopf, F. et al. Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462, 495–498 (2009). https://doi.org/10.1038/nature08519

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing