Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges


Magmatic production on Earth is dominated by asthenospheric melts of basaltic composition that have mostly erupted at mid-ocean ridges. The timescale for segregation and transport of these melts, which are ultimately responsible for formation of the Earth’s crust, is critically dependent on the permeability of the partly molten asthenospheric mantle, yet this permeability is known mainly from semi-empirical and analogue models1,2,3,4,5,6. Here we use a high-pressure, high-temperature centrifuge, at accelerations of 400g–700g, to measure the rate of basalt melt flow in olivine aggregates with porosities of 5–12 per cent. The resulting permeabilities are consistent with a microscopic model in which melt is completely connected, and are one to two orders of magnitude larger than predicted by current parameterizations4,7. Extrapolation of the measurements to conditions characteristic8 of asthenosphere below mid-ocean ridges yields proportionally higher transport speeds. Application of these results in a model9 of porous-media channelling instabilities10 yields melt transport times of 1–2.5 kyr across the entire asthenosphere, which is sufficient to preserve the observed 230Th excess of mid-ocean-ridge basalts and the mantle signatures of even shorter-lived isotopes such as 226Ra (refs 5,11–14).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centrifuged high-pressure sample and principle of obtaining melt velocities.
Figure 2: Profiles of porosity versus sample height for the basaltic melt centrifuged from the olivine matrix.
Figure 3: Transport times and melt speeds below MORs.


  1. Maaloe, S. & Scheie, A. The permeability controlled accumulation of primary magma. Contrib. Mineral. Petrol. 81, 350–357 (1982)

    Article  ADS  Google Scholar 

  2. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Van Bargen, N. & Waff, H. S. Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91, 9261–9276 (1986)

    Article  ADS  Google Scholar 

  4. Wark, D. A., Williams, C. A., Watson, E. B. & Price, J. D. Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. J. Geophys. Res. 108 10.1029/2001JB001575 (2003)

  5. Faul, U. H. Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920–923 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Cheadle, M. J., Elliott, M. T. & McKenzie, D. Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium. Geology 32, 757–760 (2004)

    Article  ADS  Google Scholar 

  7. Richardson, C. & McKenzie, D. Radioactive disequilibria from 2D models of melt generation by plumes and ridges. Earth Planet. Sci. Lett. 128, 425–437 (1994)

    Article  ADS  CAS  Google Scholar 

  8. The MELT Seismic Team. Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280, 1215–1218 (1998)

    Article  ADS  Google Scholar 

  9. Connolly, J. A. D. & Podladchikov, Y. Y. Decompaction weakening and channeling instability in ductile porous media: implications for asthenospheric melt segregation. J. Geophys. Res. 112 10.1029/2005JB004213 (2007)

  10. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. Lond. A 355, 283–318 (1997)

    Article  ADS  Google Scholar 

  11. Spiegelman, M., Kelemen, P. B. & Aharonov, E. Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J. Geophys. Res. 106, 2061–2077 (2001)

    Article  ADS  Google Scholar 

  12. McKenzie, D. Constraints on melt generation and transport from U-series activity ratios. Chem. Geol. 162, 81–94 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Rubin, K. H., van der Zander, I., Smith, M. C. & Bergmanis, E. C. Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature 437, 534–538 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Stracke, A., Bourdon, B. & McKenzie, D. Melt extraction in the Earth’s mantle: constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244, 97–112 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Spiegelman, M. & McKenzie, D. Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth Planet. Sci. Lett. 83, 136–152 (1987)

    Article  ADS  Google Scholar 

  16. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990)

    Article  ADS  Google Scholar 

  17. Sobolev, A. V. & Shimizu, N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363, 151–154 (1999)

    Article  ADS  Google Scholar 

  18. Salters, V. J. M. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Daines, M. J. & Kohlstedt, D. L. The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys. Res. Lett. 21, 145–148 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Holtzman, B. K. Groebner, N. J., Zimmermann, M. E., Ginsberg, S. B. & Kohlstedt, D. L. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4 10.1029/2001GC000258 (2003)

  21. Schmidt, M. W., Connolly, J. A. D., Günter, D. & Bogaerts, M. Element partitioning: the role of melt structure and composition. Science 312, 1646–1650 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Renner, J., Viskupic, K., Hirth, G. & Evans, B. Melt extraction from partially molten peridotites. Geochem. Geophys. Geosyst. 4 10.1029/2002GC000369 (2003)

  23. Bottinga, Y. & Weill, D. F. The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475 (1972)

    Article  ADS  CAS  Google Scholar 

  24. Dienes, J. K. in Issues in Rock Mechanics (eds Goodman, R. E. & Heuze, F. E.) 86–94 (American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982)

    Google Scholar 

  25. Connolly, J. A. D., Holness, M. B., Rubie, D. C. & Rushmer, T. Reaction-induced microcracking: an experimental investigation of a mechanism for enhancing anatectic melt extraction. Geology 25, 591–594 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Mercier, J. C. Magnitude of the continental lithospheric stresses inferred from rheomorphic petrology. J. Geophys. Res. 85, 6293–6303 (1980)

    Article  ADS  Google Scholar 

  27. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Spiegelman, M. & Elliott, T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1–20 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Lundstrom, C. C. Uranium-series disequilibria in mid-ocean ridge basalts: observations and models of basalt genesis. Rev. Mineral. Geochem. 52, 175–214 (2003)

    Article  CAS  Google Scholar 

  31. Van Orman, J. A., Saal, A. E., Bourdon, B. & Hauri, E. H. Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt-cumulate interaction. Geochim. Cosmochim. Acta 70, 4797–4812 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Bouilhol, P. et al. Recording of arc crust-mantle transition zone formation by melt-rock reaction: evidence from ultramafic rocks of Sapat (Kohistan, Northern Pakistan). Lithos 107, 17–37 (2009)

    Article  ADS  CAS  Google Scholar 

  33. Wilkinson, D. S. & Ashby, M. F. Pressure sintering by power law creep. Acta Metall. 23, 1277–1285 (1975)

    Article  CAS  Google Scholar 

  34. Connolly, J. A. D. & Podladchikov, Y. Y. Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics 324, 137–168 (2000)

    Article  ADS  Google Scholar 

  35. Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J. M.) 83–106 (Geophys. Monogr. 138, American Geophysical Union, 2003)

    Book  Google Scholar 

Download references


Discussion with G. Hirth improved this work, which was supported by ETH grant TH 20/03-2 and by SNF grant 200020-111725-1.

Author Contributions M.W.S. and N.B. designed this project and obtained its funding; the experiments and modal and grain-size analyses were performed by G.S.; the analysis of the experimental results and writing of the manuscript were done by J.A.D.C. and M.W.S. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Max W. Schmidt.

Supplementary information

Supplementary Information

This file contains a Supplementary Table, Supplementary Data and a Supplementary Reference. (PDF 91 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Connolly, J., Schmidt, M., Solferino, G. et al. Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature 462, 209–212 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing