Subjects

Abstract

DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA–protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Gene Expression Omnibus

Data deposits

Sequence data is available under the GEO accessions GSM429321-23, GSM432685-92, GSM438361-64, GSE17917, GSE18292 and GSE16256, and the SRA accessions SRX006782-89, SRX006239-41, SRX007165.1-68.1 and SRP000941. Analysed data sets can be obtained from http://neomorph.salk.edu/human_methylome.

References

  1. 1.

    & DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975)

  2. 2.

    X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–25 (1975)

  3. 3.

    The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402 (2000)

  4. 4.

    , & Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992)

  5. 5.

    et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004)

  6. 6.

    , , & DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999)

  7. 7.

    Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007)

  8. 8.

    et al. Developmental programming of CpG island methylation profiles in the human genome. Nature Struct. Mol. Biol. 16, 564–571 (2009)

  9. 9.

    & Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19, 273–280 (2007)

  10. 10.

    & Linking DNA methylation and histone modification: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009)

  11. 11.

    , , , & A human B cell methylome at 100-base pair resolution. Proc. Natl Acad. Sci. USA 106, 671–678 (2009)

  12. 12.

    et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnol. 27, 361–368 (2009)

  13. 13.

    et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnol. 27, 353–360 (2009)

  14. 14.

    et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008)

  15. 15.

    et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008)

  16. 16.

    et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008)

  17. 17.

    et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

  18. 18.

    et al. Characterization of a new human diploid cell strain, IMR-90. Science 196, 60–63 (1977)

  19. 19.

    et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA 97, 5237–5242 (2000)

  20. 20.

    , & The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem. Biophys. Res. Commun. 145, 888–894 (1987)

  21. 21.

    et al. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29, 3506–3512 (2001)

  22. 22.

    & Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpA sites. J. Mol. Biol. 309, 1201–1208 (2001)

  23. 23.

    et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol. 8, 416–424 (2006)

  24. 24.

    , & Modification of subtelomeric DNA. Mol. Cell. Biol. 24, 4571–4580 (2004)

  25. 25.

    et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044–1056 (2009)

  26. 26.

    & Epigenetics: perceptive enzymes. Nature 449, 148–149 (2007)

  27. 27.

    , , , & Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248–251 (2007)

  28. 28.

    & Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000)

  29. 29.

    , & Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195, 67–71 (1997)

  30. 30.

    et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000)

  31. 31.

    , & Transcriptional regulation of rat cyclin D1 gene by CpG methylation status in promoter region. J. Biol. Chem. 274, 28787–28793 (1999)

  32. 32.

    , , & Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene 18, 4108–4119 (1999)

  33. 33.

    , , & Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007)

  34. 34.

    et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009)

  35. 35.

    et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 19, 1165–1174 (2009)

  36. 36.

    et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379–384 (2007)

  37. 37.

    & The epigenomics of cancer. Cell 128, 683–692 (2007)

  38. 38.

    & Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143 (2007)

  39. 39.

    Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnol. 25, 803–816 (2007)

  40. 40.

    , , & Identification of endogenous retroviral reading frames in the human genome. Retrovirology 1, 32 (2004)

  41. 41.

    Inputs and outputs for chromatin-targeted RNAi. Trends Plant Sci. 13, 383–389 (2008)

  42. 42.

    et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006)

  43. 43.

    et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

  44. 44.

    et al. Feeder-independent culture of human embryonic stem cells. Nature Methods 3, 637–646 (2006)

  45. 45.

    et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol. 24, 185–187 (2006)

  46. 46.

    , , & Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

Download references

Acknowledgements

We thank A. Elwell and A. Hernandez for assistance with sequence library preparation and Illumina sequencing. R.L. is supported by a Human Frontier Science Program Long-term Fellowship. R.D.H. is supported by an American Cancer Society Postdoctoral Fellowship. This work was supported by grants from the following: Mary K. Chapman Foundation, The National Institutes of Health (U01 ES017166 and U01 1U01ES017166-01), the California Institute for Regenerative Medicine (RS1-00292-1), the Australian Research Council Centre of Excellence Program (CE0561495, DP0771156) and Morgridge Institute for Research, Madison, Wisconsin. We thank the NIH Roadmap Reference Epigenome Consortium (http://nihroadmap.nih.gov/epigenomics/referenceepigenomeconsortium.asp) and C. Gunter (Hudson-Alpha Institute) for assistance. This study was carried out as part of the NIH Roadmap Epigenomics Program.

Author Contributions Experiments were designed by J.R.E., B.R., R.L., J.A.T. and R.D.H. Cells were grown by J.A.-B. and Q.-M.N. MethylC-Seq, RNA-Seq and smRNA-Seq experiments were conducted by R.L. and J.R.N. ChIP-Seq experiments were conducted by R.D.H., L.L. and Z.Y. ChIP-Seq data analysis was performed by G.H., R.D.H. and L.E. BS-PCR validation was performed by R.H.D. Sequencing data processing was performed by R.L., J.T.-F., L.E., V.R. and G.H. Bioinformatic and statistical analyses were conducted by M.P., R.L., G.H., J.T.-F., R.H.D., R.S. and A.H.M. AnnoJ development was performed by J.T.F and A.H.M. The manuscript was prepared by R.L., M.P., R.H.D., A.H.M. and J.R.E.

Author information

Author notes

    • Ryan Lister
    •  & Mattia Pelizzola

    These authors contributed equally to this work.

Affiliations

  1. Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA

    • Ryan Lister
    • , Mattia Pelizzola
    • , Robert H. Dowen
    • , Joseph R. Nery
    •  & Joseph R. Ecker
  2. Ludwig Institute for Cancer Research,

    • R. David Hawkins
    • , Gary Hon
    • , Leonard Lee
    • , Zhen Ye
    • , Que-Minh Ngo
    • , Lee Edsall
    •  & Bing Ren
  3. Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA

    • Bing Ren
  4. ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia

    • Julian Tonti-Filippini
    •  & A. Harvey Millar
  5. Morgridge Institute for Research, Madison, Wisconsin 53707, USA

    • Jessica Antosiewicz-Bourget
    • , Ron Stewart
    • , Victor Ruotti
    •  & James A. Thomson
  6. Genome Center of Wisconsin, Madison, Wisconsin 53706, USA

    • Jessica Antosiewicz-Bourget
    • , Ron Stewart
    • , Victor Ruotti
    •  & James A. Thomson
  7. Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA

    • James A. Thomson
  8. Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    • James A. Thomson

Authors

  1. Search for Ryan Lister in:

  2. Search for Mattia Pelizzola in:

  3. Search for Robert H. Dowen in:

  4. Search for R. David Hawkins in:

  5. Search for Gary Hon in:

  6. Search for Julian Tonti-Filippini in:

  7. Search for Joseph R. Nery in:

  8. Search for Leonard Lee in:

  9. Search for Zhen Ye in:

  10. Search for Que-Minh Ngo in:

  11. Search for Lee Edsall in:

  12. Search for Jessica Antosiewicz-Bourget in:

  13. Search for Ron Stewart in:

  14. Search for Victor Ruotti in:

  15. Search for A. Harvey Millar in:

  16. Search for James A. Thomson in:

  17. Search for Bing Ren in:

  18. Search for Joseph R. Ecker in:

Corresponding author

Correspondence to Joseph R. Ecker.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Figures 1-16 with Legends, Supplementary Methods, Supplementary Data and Supplementary References.

Excel files

  1. 1.

    Supplementary Tables

    This file contains Supplementary Tables 1-12 which provide additional material that is referred to in the main article.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature08514

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.